| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordelordALTVD | Structured version Visualization version Unicode version | ||
Description: An element of an ordinal class is ordinal. Proposition 7.6 of
[TakeutiZaring] p. 36. This is an alternate proof of ordelord 5745 using
the Axiom of Regularity indirectly through dford2 8517. dford2 is a
weaker definition of ordinal number. Given the Axiom of Regularity, it
need not be assumed that
|
| Ref | Expression |
|---|---|
| ordelordALTVD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 38790 |
. . . . . 6
| |
| 2 | simpl 473 |
. . . . . 6
| |
| 3 | 1, 2 | e1a 38852 |
. . . . 5
|
| 4 | ordtr 5737 |
. . . . 5
| |
| 5 | 3, 4 | e1a 38852 |
. . . 4
|
| 6 | dford2 8517 |
. . . . . . 7
| |
| 7 | 6 | simprbi 480 |
. . . . . 6
|
| 8 | 3, 7 | e1a 38852 |
. . . . 5
|
| 9 | 3orcomb 1048 |
. . . . . . . . . . 11
| |
| 10 | 9 | ax-gen 1722 |
. . . . . . . . . 10
|
| 11 | alral 2928 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | e0a 38999 |
. . . . . . . . 9
|
| 13 | ralbi 3068 |
. . . . . . . . 9
| |
| 14 | 12, 13 | e0a 38999 |
. . . . . . . 8
|
| 15 | 14 | ax-gen 1722 |
. . . . . . 7
|
| 16 | alral 2928 |
. . . . . . 7
| |
| 17 | 15, 16 | e0a 38999 |
. . . . . 6
|
| 18 | ralbi 3068 |
. . . . . 6
| |
| 19 | 17, 18 | e0a 38999 |
. . . . 5
|
| 20 | 8, 19 | e1bi 38854 |
. . . 4
|
| 21 | simpr 477 |
. . . . 5
| |
| 22 | 1, 21 | e1a 38852 |
. . . 4
|
| 23 | tratrb 38746 |
. . . . 5
| |
| 24 | 23 | 3exp 1264 |
. . . 4
|
| 25 | 5, 20, 22, 24 | e111 38899 |
. . 3
|
| 26 | trss 4761 |
. . . . 5
| |
| 27 | 5, 22, 26 | e11 38913 |
. . . 4
|
| 28 | ssralv2 38737 |
. . . . 5
| |
| 29 | 28 | ex 450 |
. . . 4
|
| 30 | 27, 27, 8, 29 | e111 38899 |
. . 3
|
| 31 | dford2 8517 |
. . . 4
| |
| 32 | 31 | simplbi2 655 |
. . 3
|
| 33 | 25, 30, 32 | e11 38913 |
. 2
|
| 34 | 33 | in1 38787 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-vd1 38786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |