Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege129d Structured version   Visualization version   Unicode version

Theorem frege129d 38055
Description: If  F is a function and (for distinct  A and  B) either  A follows  B or  B follows  A in the transitive closure of  F, the successor of  A is either  B or it follows  B or it comes before  B in the transitive closure of  F. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 38286. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege129d.f  |-  ( ph  ->  F  e.  _V )
frege129d.a  |-  ( ph  ->  A  e.  dom  F
)
frege129d.c  |-  ( ph  ->  C  =  ( F `
 A ) )
frege129d.or  |-  ( ph  ->  ( A ( t+ `  F ) B  \/  A  =  B  \/  B ( t+ `  F
) A ) )
frege129d.fun  |-  ( ph  ->  Fun  F )
Assertion
Ref Expression
frege129d  |-  ( ph  ->  ( B ( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F
) B ) )

Proof of Theorem frege129d
StepHypRef Expression
1 frege129d.or . 2  |-  ( ph  ->  ( A ( t+ `  F ) B  \/  A  =  B  \/  B ( t+ `  F
) A ) )
2 frege129d.f . . . . . . . 8  |-  ( ph  ->  F  e.  _V )
32adantr 481 . . . . . . 7  |-  ( (
ph  /\  A (
t+ `  F
) B )  ->  F  e.  _V )
4 frege129d.a . . . . . . . 8  |-  ( ph  ->  A  e.  dom  F
)
54adantr 481 . . . . . . 7  |-  ( (
ph  /\  A (
t+ `  F
) B )  ->  A  e.  dom  F )
6 frege129d.c . . . . . . . 8  |-  ( ph  ->  C  =  ( F `
 A ) )
76adantr 481 . . . . . . 7  |-  ( (
ph  /\  A (
t+ `  F
) B )  ->  C  =  ( F `  A ) )
8 simpr 477 . . . . . . 7  |-  ( (
ph  /\  A (
t+ `  F
) B )  ->  A ( t+ `  F ) B )
9 frege129d.fun . . . . . . . 8  |-  ( ph  ->  Fun  F )
109adantr 481 . . . . . . 7  |-  ( (
ph  /\  A (
t+ `  F
) B )  ->  Fun  F )
113, 5, 7, 8, 10frege126d 38054 . . . . . 6  |-  ( (
ph  /\  A (
t+ `  F
) B )  -> 
( C ( t+ `  F ) B  \/  C  =  B  \/  B ( t+ `  F
) C ) )
12 biid 251 . . . . . . 7  |-  ( C ( t+ `  F ) B  <->  C (
t+ `  F
) B )
13 eqcom 2629 . . . . . . 7  |-  ( C  =  B  <->  B  =  C )
14 biid 251 . . . . . . 7  |-  ( B ( t+ `  F ) C  <->  B (
t+ `  F
) C )
1512, 13, 143orbi123i 1252 . . . . . 6  |-  ( ( C ( t+ `  F ) B  \/  C  =  B  \/  B ( t+ `  F ) C )  <->  ( C
( t+ `  F ) B  \/  B  =  C  \/  B ( t+ `  F ) C ) )
1611, 15sylib 208 . . . . 5  |-  ( (
ph  /\  A (
t+ `  F
) B )  -> 
( C ( t+ `  F ) B  \/  B  =  C  \/  B ( t+ `  F
) C ) )
17 3orcomb 1048 . . . . . 6  |-  ( ( C ( t+ `  F ) B  \/  B  =  C  \/  B ( t+ `  F ) C )  <->  ( C
( t+ `  F ) B  \/  B ( t+ `  F ) C  \/  B  =  C ) )
18 3orrot 1044 . . . . . 6  |-  ( ( C ( t+ `  F ) B  \/  B ( t+ `  F ) C  \/  B  =  C )  <->  ( B
( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F ) B ) )
1917, 18sylbb 209 . . . . 5  |-  ( ( C ( t+ `  F ) B  \/  B  =  C  \/  B ( t+ `  F ) C )  ->  ( B ( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F ) B ) )
2016, 19syl 17 . . . 4  |-  ( (
ph  /\  A (
t+ `  F
) B )  -> 
( B ( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F
) B ) )
2120ex 450 . . 3  |-  ( ph  ->  ( A ( t+ `  F ) B  ->  ( B
( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F ) B ) ) )
22 simpr 477 . . . . . 6  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
236eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  ( F `  A
)  =  C )
24 funbrfvb 6238 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  C  <-> 
A F C ) )
2524biimpd 219 . . . . . . . . . 10  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  C  ->  A F C ) )
269, 4, 25syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =  C  ->  A F C ) )
2723, 26mpd 15 . . . . . . . 8  |-  ( ph  ->  A F C )
282, 27frege91d 38043 . . . . . . 7  |-  ( ph  ->  A ( t+ `  F ) C )
2928adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =  B )  ->  A
( t+ `  F ) C )
3022, 29eqbrtrrd 4677 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  B
( t+ `  F ) C )
3130ex 450 . . . 4  |-  ( ph  ->  ( A  =  B  ->  B ( t+ `  F ) C ) )
32 3mix1 1230 . . . 4  |-  ( B ( t+ `  F ) C  -> 
( B ( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F
) B ) )
3331, 32syl6 35 . . 3  |-  ( ph  ->  ( A  =  B  ->  ( B ( t+ `  F
) C  \/  B  =  C  \/  C
( t+ `  F ) B ) ) )
342adantr 481 . . . . . 6  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  F  e.  _V )
35 funrel 5905 . . . . . . . . 9  |-  ( Fun 
F  ->  Rel  F )
369, 35syl 17 . . . . . . . 8  |-  ( ph  ->  Rel  F )
37 reltrclfv 13758 . . . . . . . 8  |-  ( ( F  e.  _V  /\  Rel  F )  ->  Rel  ( t+ `  F ) )
382, 36, 37syl2anc 693 . . . . . . 7  |-  ( ph  ->  Rel  ( t+ `  F ) )
39 brrelex 5156 . . . . . . 7  |-  ( ( Rel  ( t+ `  F )  /\  B ( t+ `  F ) A )  ->  B  e.  _V )
4038, 39sylan 488 . . . . . 6  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  B  e.  _V )
41 fvex 6201 . . . . . . . 8  |-  ( F `
 A )  e. 
_V
426, 41syl6eqel 2709 . . . . . . 7  |-  ( ph  ->  C  e.  _V )
4342adantr 481 . . . . . 6  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  C  e.  _V )
44 elex 3212 . . . . . . . 8  |-  ( A  e.  dom  F  ->  A  e.  _V )
454, 44syl 17 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
4645adantr 481 . . . . . 6  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  A  e.  _V )
47 simpr 477 . . . . . 6  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  B ( t+ `  F ) A )
4827adantr 481 . . . . . 6  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  A F C )
4934, 40, 43, 46, 47, 48frege96d 38041 . . . . 5  |-  ( (
ph  /\  B (
t+ `  F
) A )  ->  B ( t+ `  F ) C )
5049ex 450 . . . 4  |-  ( ph  ->  ( B ( t+ `  F ) A  ->  B (
t+ `  F
) C ) )
5150, 32syl6 35 . . 3  |-  ( ph  ->  ( B ( t+ `  F ) A  ->  ( B
( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F ) B ) ) )
5221, 33, 513jaod 1392 . 2  |-  ( ph  ->  ( ( A ( t+ `  F
) B  \/  A  =  B  \/  B
( t+ `  F ) A )  ->  ( B ( t+ `  F
) C  \/  B  =  C  \/  C
( t+ `  F ) B ) ) )
531, 52mpd 15 1  |-  ( ph  ->  ( B ( t+ `  F ) C  \/  B  =  C  \/  C ( t+ `  F
) B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   dom cdm 5114   Rel wrel 5119   Fun wfun 5882   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-trcl 13726  df-relexp 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator