| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4sqlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 4sq 15668.
Change bound variables in |
| Ref | Expression |
|---|---|
| 4sq.1 |
|
| Ref | Expression |
|---|---|
| 4sqlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 |
. . 3
| |
| 2 | 1 | eleq2i 2693 |
. 2
|
| 3 | id 22 |
. . . . . . 7
| |
| 4 | ovex 6678 |
. . . . . . 7
| |
| 5 | 3, 4 | syl6eqel 2709 |
. . . . . 6
|
| 6 | 5 | a1i 11 |
. . . . 5
|
| 7 | 6 | rexlimdvva 3038 |
. . . 4
|
| 8 | 7 | rexlimivv 3036 |
. . 3
|
| 9 | oveq1 6657 |
. . . . . . . . 9
| |
| 10 | 9 | oveq1d 6665 |
. . . . . . . 8
|
| 11 | 10 | oveq1d 6665 |
. . . . . . 7
|
| 12 | 11 | eqeq2d 2632 |
. . . . . 6
|
| 13 | 12 | 2rexbidv 3057 |
. . . . 5
|
| 14 | oveq1 6657 |
. . . . . . . . 9
| |
| 15 | 14 | oveq2d 6666 |
. . . . . . . 8
|
| 16 | 15 | oveq1d 6665 |
. . . . . . 7
|
| 17 | 16 | eqeq2d 2632 |
. . . . . 6
|
| 18 | 17 | 2rexbidv 3057 |
. . . . 5
|
| 19 | 13, 18 | cbvrex2v 3180 |
. . . 4
|
| 20 | oveq1 6657 |
. . . . . . . . . 10
| |
| 21 | 20 | oveq1d 6665 |
. . . . . . . . 9
|
| 22 | 21 | oveq2d 6666 |
. . . . . . . 8
|
| 23 | 22 | eqeq2d 2632 |
. . . . . . 7
|
| 24 | oveq1 6657 |
. . . . . . . . . 10
| |
| 25 | 24 | oveq2d 6666 |
. . . . . . . . 9
|
| 26 | 25 | oveq2d 6666 |
. . . . . . . 8
|
| 27 | 26 | eqeq2d 2632 |
. . . . . . 7
|
| 28 | 23, 27 | cbvrex2v 3180 |
. . . . . 6
|
| 29 | eqeq1 2626 |
. . . . . . 7
| |
| 30 | 29 | 2rexbidv 3057 |
. . . . . 6
|
| 31 | 28, 30 | syl5bb 272 |
. . . . 5
|
| 32 | 31 | 2rexbidv 3057 |
. . . 4
|
| 33 | 19, 32 | syl5bb 272 |
. . 3
|
| 34 | 8, 33 | elab3 3358 |
. 2
|
| 35 | 2, 34 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: 4sqlem3 15654 4sqlem4 15656 4sqlem18 15666 4sq 15668 |
| Copyright terms: Public domain | W3C validator |