MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Structured version   Visualization version   Unicode version

Theorem 4sqlem18 15666
Description: Lemma for 4sq 15668. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
Assertion
Ref Expression
4sqlem18  |-  ( ph  ->  P  e.  S )
Distinct variable groups:    w, n, x, y, z    i, n, M    n, N    P, i, n    ph, n    S, i, n
Allowed substitution hints:    ph( x, y, z, w, i)    P( x, y, z, w)    S( x, y, z, w)    T( x, y, z, w, i, n)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem18
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5  |-  ( ph  ->  P  e.  Prime )
2 prmnn 15388 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 17 . . . 4  |-  ( ph  ->  P  e.  NN )
43nncnd 11036 . . 3  |-  ( ph  ->  P  e.  CC )
54mulid2d 10058 . 2  |-  ( ph  ->  ( 1  x.  P
)  =  P )
6 4sq.7 . . . . . . . . . . . 12  |-  M  = inf ( T ,  RR ,  <  )
7 4sq.6 . . . . . . . . . . . . . . 15  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
8 ssrab2 3687 . . . . . . . . . . . . . . 15  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
97, 8eqsstri 3635 . . . . . . . . . . . . . 14  |-  T  C_  NN
10 nnuz 11723 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
119, 10sseqtri 3637 . . . . . . . . . . . . 13  |-  T  C_  ( ZZ>= `  1 )
12 4sq.1 . . . . . . . . . . . . . . 15  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
13 4sq.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN )
14 4sq.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
15 4sq.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
1612, 13, 14, 1, 15, 7, 64sqlem13 15661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
1716simpld 475 . . . . . . . . . . . . 13  |-  ( ph  ->  T  =/=  (/) )
18 infssuzcl 11772 . . . . . . . . . . . . 13  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  -> inf ( T ,  RR ,  <  )  e.  T )
1911, 17, 18sylancr 695 . . . . . . . . . . . 12  |-  ( ph  -> inf ( T ,  RR ,  <  )  e.  T
)
206, 19syl5eqel 2705 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  T )
21 oveq1 6657 . . . . . . . . . . . . 13  |-  ( i  =  M  ->  (
i  x.  P )  =  ( M  x.  P ) )
2221eleq1d 2686 . . . . . . . . . . . 12  |-  ( i  =  M  ->  (
( i  x.  P
)  e.  S  <->  ( M  x.  P )  e.  S
) )
2322, 7elrab2 3366 . . . . . . . . . . 11  |-  ( M  e.  T  <->  ( M  e.  NN  /\  ( M  x.  P )  e.  S ) )
2420, 23sylib 208 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  ( M  x.  P
)  e.  S ) )
2524simprd 479 . . . . . . . . 9  |-  ( ph  ->  ( M  x.  P
)  e.  S )
26124sqlem2 15653 . . . . . . . . 9  |-  ( ( M  x.  P )  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2725, 26sylib 208 . . . . . . . 8  |-  ( ph  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2827adantr 481 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
29 simp1l 1085 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ph )
3029, 13syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  N  e.  NN )
3129, 14syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  =  ( ( 2  x.  N )  +  1 ) )
3229, 1syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  e.  Prime )
3329, 15syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  (
0 ... ( 2  x.  N ) )  C_  S )
34 simp1r 1086 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  M  e.  ( ZZ>= `  2 )
)
35 simp2ll 1128 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  a  e.  ZZ )
36 simp2lr 1129 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  b  e.  ZZ )
37 simp2rl 1130 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  c  e.  ZZ )
38 simp2rr 1131 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  d  e.  ZZ )
39 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( a  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
40 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( c  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
42 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( d  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
43 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) ) ^
2 )  +  ( ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) ) )  /  M )  =  ( ( ( ( ( ( ( a  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 ) ) )  /  M )
44 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
4512, 30, 31, 32, 33, 7, 6, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 444sqlem17 15665 . . . . . . . . . . . 12  |-  -.  (
( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )
4645pm2.21i 116 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  -.  M  e.  ( ZZ>= ` 
2 ) )
47463expia 1267 . . . . . . . . . 10  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) ) )  ->  (
( M  x.  P
)  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  ->  -.  M  e.  ( ZZ>=
`  2 ) ) )
4847anassrs 680 . . . . . . . . 9  |-  ( ( ( ( ph  /\  M  e.  ( ZZ>= ` 
2 ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
4948rexlimdvva 3038 . . . . . . . 8  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5049rexlimdvva 3038 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5128, 50mpd 15 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  -.  M  e.  ( ZZ>= `  2 )
)
5251pm2.01da 458 . . . . 5  |-  ( ph  ->  -.  M  e.  (
ZZ>= `  2 ) )
5324simpld 475 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
54 elnn1uz2 11765 . . . . . . 7  |-  ( M  e.  NN  <->  ( M  =  1  \/  M  e.  ( ZZ>= `  2 )
) )
5553, 54sylib 208 . . . . . 6  |-  ( ph  ->  ( M  =  1  \/  M  e.  (
ZZ>= `  2 ) ) )
5655ord 392 . . . . 5  |-  ( ph  ->  ( -.  M  =  1  ->  M  e.  ( ZZ>= `  2 )
) )
5752, 56mt3d 140 . . . 4  |-  ( ph  ->  M  =  1 )
5857, 20eqeltrrd 2702 . . 3  |-  ( ph  ->  1  e.  T )
59 oveq1 6657 . . . . . 6  |-  ( i  =  1  ->  (
i  x.  P )  =  ( 1  x.  P ) )
6059eleq1d 2686 . . . . 5  |-  ( i  =  1  ->  (
( i  x.  P
)  e.  S  <->  ( 1  x.  P )  e.  S ) )
6160, 7elrab2 3366 . . . 4  |-  ( 1  e.  T  <->  ( 1  e.  NN  /\  (
1  x.  P )  e.  S ) )
6261simprbi 480 . . 3  |-  ( 1  e.  T  ->  (
1  x.  P )  e.  S )
6358, 62syl 17 . 2  |-  ( ph  ->  ( 1  x.  P
)  e.  S )
645, 63eqeltrrd 2702 1  |-  ( ph  ->  P  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    mod cmo 12668   ^cexp 12860   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  4sqlem19  15667
  Copyright terms: Public domain W3C validator