MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl3r Structured version   Visualization version   Unicode version

Theorem adantl3r 786
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
adantl3r.1  |-  ( ( ( ( ph  /\  rh )  /\  mu )  /\  la )  ->  ka )
Assertion
Ref Expression
adantl3r  |-  ( ( ( ( ( ph  /\ 
si )  /\  rh )  /\  mu )  /\  la )  ->  ka )

Proof of Theorem adantl3r
StepHypRef Expression
1 adantl3r.1 . . . 4  |-  ( ( ( ( ph  /\  rh )  /\  mu )  /\  la )  ->  ka )
21ex 450 . . 3  |-  ( ( ( ph  /\  rh )  /\  mu )  -> 
( la  ->  ka )
)
32adantllr 755 . 2  |-  ( ( ( ( ph  /\  si )  /\  rh )  /\  mu )  -> 
( la  ->  ka )
)
43imp 445 1  |-  ( ( ( ( ( ph  /\ 
si )  /\  rh )  /\  mu )  /\  la )  ->  ka )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  adantl4r  787  ad5ant1345  1316  iscgrglt  25409  legov  25480  dfcgra2  25721  omssubadd  30362  circlemeth  30718  poimirlem29  33438  adantlllr  39199  climxlim2lem  40071  hspmbllem2  40841
  Copyright terms: Public domain W3C validator