![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version Unicode version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ad2ant2rl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantrl 752 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | adantlr 751 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: omwordri 7652 omxpenlem 8061 infxpabs 9034 domfin4 9133 isf32lem7 9181 ordpipq 9764 muladd 10462 lemul12b 10880 mulge0b 10893 qaddcl 11804 iooshf 12252 elfzomelpfzo 12572 expnegz 12894 bitsshft 15197 setscom 15903 lubun 17123 grplmulf1o 17489 lmodfopne 18901 lidl1el 19218 frlmipval 20118 en2top 20789 cnpnei 21068 kgenidm 21350 ufileu 21723 fmfnfmlem4 21761 isngp4 22416 fsumcn 22673 evth 22758 mbfmulc2lem 23414 itg1addlem4 23466 dgreq0 24021 cxplt3 24446 cxple3 24447 basellem4 24810 axcontlem2 25845 umgr2edg 26101 nbumgrvtx 26242 umgrhashecclwwlk 26955 frgrncvvdeqlem9 27171 frgrwopreglem5ALT 27186 numclwwlk7lem 27247 grpoidinvlem3 27360 grpoideu 27363 grporcan 27372 3oalem2 28522 hmops 28879 adjadd 28952 mdslmd4i 29192 mdexchi 29194 mdsymlem1 29262 bnj607 30986 cvxsconn 31225 poseq 31750 sltsolem1 31826 nodenselem7 31840 tailfb 32372 poimirlem14 33423 mblfinlem4 33449 ismblfin 33450 ismtyres 33607 ghomco 33690 rngoisocnv 33780 1idl 33825 ps-2 34764 srhmsubc 42076 srhmsubcALTV 42094 aacllem 42547 |
Copyright terms: Public domain | W3C validator |