Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrfn Structured version   Visualization version   Unicode version

Theorem addrfn 38676
Description: Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
addrfn  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A +r
B )  Fn  RR )

Proof of Theorem addrfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . 3  |-  ( ( A `  x )  +  ( B `  x ) )  e. 
_V
2 eqid 2622 . . 3  |-  ( x  e.  RR  |->  ( ( A `  x )  +  ( B `  x ) ) )  =  ( x  e.  RR  |->  ( ( A `
 x )  +  ( B `  x
) ) )
31, 2fnmpti 6022 . 2  |-  ( x  e.  RR  |->  ( ( A `  x )  +  ( B `  x ) ) )  Fn  RR
4 addrval 38670 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A +r
B )  =  ( x  e.  RR  |->  ( ( A `  x
)  +  ( B `
 x ) ) ) )
54fneq1d 5981 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( A +r B )  Fn  RR  <->  ( x  e.  RR  |->  ( ( A `
 x )  +  ( B `  x
) ) )  Fn  RR ) )
63, 5mpbiri 248 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A +r
B )  Fn  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939   +rcplusr 38661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-addr 38667
This theorem is referenced by:  addrcom  38679
  Copyright terms: Public domain W3C validator