Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrval Structured version   Visualization version   Unicode version

Theorem addrval 38670
Description: Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
addrval  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A +r
B )  =  ( v  e.  RR  |->  ( ( A `  v
)  +  ( B `
 v ) ) ) )
Distinct variable groups:    v, A    v, B
Allowed substitution hints:    C( v)    D( v)

Proof of Theorem addrval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  C  ->  A  e.  _V )
2 elex 3212 . 2  |-  ( B  e.  D  ->  B  e.  _V )
3 fveq1 6190 . . . . 5  |-  ( x  =  A  ->  (
x `  v )  =  ( A `  v ) )
4 fveq1 6190 . . . . 5  |-  ( y  =  B  ->  (
y `  v )  =  ( B `  v ) )
53, 4oveqan12d 6669 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x `  v )  +  ( y `  v ) )  =  ( ( A `  v )  +  ( B `  v ) ) )
65mpteq2dv 4745 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( v  e.  RR  |->  ( ( x `  v )  +  ( y `  v ) ) )  =  ( v  e.  RR  |->  ( ( A `  v
)  +  ( B `
 v ) ) ) )
7 df-addr 38667 . . 3  |-  +r 
=  ( x  e. 
_V ,  y  e. 
_V  |->  ( v  e.  RR  |->  ( ( x `
 v )  +  ( y `  v
) ) ) )
8 reex 10027 . . . 4  |-  RR  e.  _V
98mptex 6486 . . 3  |-  ( v  e.  RR  |->  ( ( A `  v )  +  ( B `  v ) ) )  e.  _V
106, 7, 9ovmpt2a 6791 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A +r
B )  =  ( v  e.  RR  |->  ( ( A `  v
)  +  ( B `
 v ) ) ) )
111, 2, 10syl2an 494 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A +r
B )  =  ( v  e.  RR  |->  ( ( A `  v
)  +  ( B `
 v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939   +rcplusr 38661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-addr 38667
This theorem is referenced by:  addrfv  38673  addrfn  38676
  Copyright terms: Public domain W3C validator