Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrn Structured version   Visualization version   Unicode version

Theorem afvelrn 41248
Description: A function's value belongs to its range, analogous to fvelrn 6352. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrn  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F''' A )  e.  ran  F )

Proof of Theorem afvelrn
StepHypRef Expression
1 funres 5929 . . . . . 6  |-  ( Fun 
F  ->  Fun  ( F  |`  { A } ) )
21anim1i 592 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( Fun  ( F  |` 
{ A } )  /\  A  e.  dom  F ) )
32ancomd 467 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )
4 df-dfat 41196 . . . 4  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
53, 4sylibr 224 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  F defAt  A )
6 afvfundmfveq 41218 . . . 4  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
76eqcomd 2628 . . 3  |-  ( F defAt 
A  ->  ( F `  A )  =  ( F''' A ) )
85, 7syl 17 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  ( F''' A ) )
9 fvelrn 6352 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)
108, 9eqeltrrd 2702 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F''' A )  e.  ran  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882   ` cfv 5888   defAt wdfat 41193  '''cafv 41194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-dfat 41196  df-afv 41197
This theorem is referenced by:  fnafvelrn  41249
  Copyright terms: Public domain W3C validator