| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assalem | Structured version Visualization version Unicode version | ||
| Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| isassa.v |
|
| isassa.f |
|
| isassa.b |
|
| isassa.s |
|
| isassa.t |
|
| Ref | Expression |
|---|---|
| assalem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassa.v |
. . . 4
| |
| 2 | isassa.f |
. . . 4
| |
| 3 | isassa.b |
. . . 4
| |
| 4 | isassa.s |
. . . 4
| |
| 5 | isassa.t |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | isassa 19315 |
. . 3
|
| 7 | 6 | simprbi 480 |
. 2
|
| 8 | oveq1 6657 |
. . . . . 6
| |
| 9 | 8 | oveq1d 6665 |
. . . . 5
|
| 10 | oveq1 6657 |
. . . . 5
| |
| 11 | 9, 10 | eqeq12d 2637 |
. . . 4
|
| 12 | oveq1 6657 |
. . . . . 6
| |
| 13 | 12 | oveq2d 6666 |
. . . . 5
|
| 14 | 13, 10 | eqeq12d 2637 |
. . . 4
|
| 15 | 11, 14 | anbi12d 747 |
. . 3
|
| 16 | oveq2 6658 |
. . . . . 6
| |
| 17 | 16 | oveq1d 6665 |
. . . . 5
|
| 18 | oveq1 6657 |
. . . . . 6
| |
| 19 | 18 | oveq2d 6666 |
. . . . 5
|
| 20 | 17, 19 | eqeq12d 2637 |
. . . 4
|
| 21 | oveq1 6657 |
. . . . 5
| |
| 22 | 21, 19 | eqeq12d 2637 |
. . . 4
|
| 23 | 20, 22 | anbi12d 747 |
. . 3
|
| 24 | oveq2 6658 |
. . . . 5
| |
| 25 | oveq2 6658 |
. . . . . 6
| |
| 26 | 25 | oveq2d 6666 |
. . . . 5
|
| 27 | 24, 26 | eqeq12d 2637 |
. . . 4
|
| 28 | oveq2 6658 |
. . . . . 6
| |
| 29 | 28 | oveq2d 6666 |
. . . . 5
|
| 30 | 29, 26 | eqeq12d 2637 |
. . . 4
|
| 31 | 27, 30 | anbi12d 747 |
. . 3
|
| 32 | 15, 23, 31 | rspc3v 3325 |
. 2
|
| 33 | 7, 32 | mpan9 486 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-assa 19312 |
| This theorem is referenced by: assaass 19317 assaassr 19318 |
| Copyright terms: Public domain | W3C validator |