Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd Structured version   Visualization version   Unicode version

Theorem axccd 39429
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd.1  |-  ( ph  ->  A  ~~  om )
axccd.2  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  (/) )
Assertion
Ref Expression
axccd  |-  ( ph  ->  E. f A. x  e.  A  ( f `  x )  e.  x
)
Distinct variable groups:    A, f, x    ph, f, x

Proof of Theorem axccd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 axccd.1 . . 3  |-  ( ph  ->  A  ~~  om )
2 encv 7963 . . . . . 6  |-  ( A 
~~  om  ->  ( A  e.  _V  /\  om  e.  _V ) )
32simpld 475 . . . . 5  |-  ( A 
~~  om  ->  A  e. 
_V )
41, 3syl 17 . . . 4  |-  ( ph  ->  A  e.  _V )
5 breq1 4656 . . . . . 6  |-  ( y  =  A  ->  (
y  ~~  om  <->  A  ~~  om ) )
6 raleq 3138 . . . . . . 7  |-  ( y  =  A  ->  ( A. x  e.  y 
( x  =/=  (/)  ->  (
f `  x )  e.  x )  <->  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
76exbidv 1850 . . . . . 6  |-  ( y  =  A  ->  ( E. f A. x  e.  y  ( x  =/=  (/)  ->  ( f `  x )  e.  x
)  <->  E. f A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
85, 7imbi12d 334 . . . . 5  |-  ( y  =  A  ->  (
( y  ~~  om  ->  E. f A. x  e.  y  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )  <->  ( A  ~~  om  ->  E. f A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) ) ) )
9 ax-cc 9257 . . . . 5  |-  ( y 
~~  om  ->  E. f A. x  e.  y 
( x  =/=  (/)  ->  (
f `  x )  e.  x ) )
108, 9vtoclg 3266 . . . 4  |-  ( A  e.  _V  ->  ( A  ~~  om  ->  E. f A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) ) )
114, 10syl 17 . . 3  |-  ( ph  ->  ( A  ~~  om  ->  E. f A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
121, 11mpd 15 . 2  |-  ( ph  ->  E. f A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
13 nfv 1843 . . . . . 6  |-  F/ x ph
14 nfra1 2941 . . . . . 6  |-  F/ x A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x )
1513, 14nfan 1828 . . . . 5  |-  F/ x
( ph  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
16 axccd.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  (/) )
1716adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  A  (
x  =/=  (/)  ->  (
f `  x )  e.  x ) )  /\  x  e.  A )  ->  x  =/=  (/) )
18 rspa 2930 . . . . . . . 8  |-  ( ( A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x )  /\  x  e.  A )  ->  (
x  =/=  (/)  ->  (
f `  x )  e.  x ) )
1918adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  A  (
x  =/=  (/)  ->  (
f `  x )  e.  x ) )  /\  x  e.  A )  ->  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) )
2017, 19mpd 15 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  A  (
x  =/=  (/)  ->  (
f `  x )  e.  x ) )  /\  x  e.  A )  ->  ( f `  x
)  e.  x )
2120ex 450 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )  ->  (
x  e.  A  -> 
( f `  x
)  e.  x ) )
2215, 21ralrimi 2957 . . . 4  |-  ( (
ph  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )  ->  A. x  e.  A  ( f `  x )  e.  x
)
2322ex 450 . . 3  |-  ( ph  ->  ( A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
)  ->  A. x  e.  A  ( f `  x )  e.  x
) )
2423eximdv 1846 . 2  |-  ( ph  ->  ( E. f A. x  e.  A  (
x  =/=  (/)  ->  (
f `  x )  e.  x )  ->  E. f A. x  e.  A  ( f `  x
)  e.  x ) )
2512, 24mpd 15 1  |-  ( ph  ->  E. f A. x  e.  A  ( f `  x )  e.  x
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888   omcom 7065    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cc 9257
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-en 7956
This theorem is referenced by:  axccd2  39430
  Copyright terms: Public domain W3C validator