MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12OLD Structured version   Visualization version   Unicode version

Theorem ax12OLD 2341
Description: Obsolete proof of ax12 2304 as of 4-Jul-2021 . Rederivation of axiom ax-12 2047 from ax12v 2048, axc11r 2187, and other axioms. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax12OLD  |-  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) )

Proof of Theorem ax12OLD
StepHypRef Expression
1 biidd 252 . . . . 5  |-  ( A. x  x  =  y  ->  ( ph  <->  ph ) )
21dral1 2325 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ph ) )
3 ax-1 6 . . . . 5  |-  ( ph  ->  ( x  =  y  ->  ph ) )
43alimi 1739 . . . 4  |-  ( A. x ph  ->  A. x
( x  =  y  ->  ph ) )
52, 4syl6bir 244 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
65a1d 25 . 2  |-  ( A. x  x  =  y  ->  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) ) )
7 sp 2053 . . 3  |-  ( A. y ph  ->  ph )
8 axc15 2303 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
97, 8syl7 74 . 2  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
106, 9pm2.61i 176 1  |-  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator