| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axunndlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| axunndlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 8510 |
. . . . . . . 8
| |
| 2 | elequ2 2004 |
. . . . . . . . 9
| |
| 3 | 2 | anbi2d 740 |
. . . . . . . 8
|
| 4 | 1, 3 | mtbii 316 |
. . . . . . 7
|
| 5 | 4 | sps 2055 |
. . . . . 6
|
| 6 | 5 | nexdv 1864 |
. . . . 5
|
| 7 | 6 | pm2.21d 118 |
. . . 4
|
| 8 | 7 | axc4i 2131 |
. . 3
|
| 9 | 19.8a 2052 |
. . 3
| |
| 10 | 8, 9 | syl 17 |
. 2
|
| 11 | zfun 6950 |
. . 3
| |
| 12 | nfnae 2318 |
. . . . 5
| |
| 13 | nfnae 2318 |
. . . . . . 7
| |
| 14 | nfvd 1844 |
. . . . . . . 8
| |
| 15 | nfcvf 2788 |
. . . . . . . . 9
| |
| 16 | 15 | nfcrd 2771 |
. . . . . . . 8
|
| 17 | 14, 16 | nfand 1826 |
. . . . . . 7
|
| 18 | 13, 17 | nfexd 2167 |
. . . . . 6
|
| 19 | 18, 14 | nfimd 1823 |
. . . . 5
|
| 20 | elequ1 1997 |
. . . . . . . . 9
| |
| 21 | 20 | anbi1d 741 |
. . . . . . . 8
|
| 22 | 21 | exbidv 1850 |
. . . . . . 7
|
| 23 | 22, 20 | imbi12d 334 |
. . . . . 6
|
| 24 | 23 | a1i 11 |
. . . . 5
|
| 25 | 12, 19, 24 | cbvald 2277 |
. . . 4
|
| 26 | 25 | exbidv 1850 |
. . 3
|
| 27 | 11, 26 | mpbii 223 |
. 2
|
| 28 | 10, 27 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 |
| This theorem is referenced by: axunnd 9418 |
| Copyright terms: Public domain | W3C validator |