| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axtgupdim2OLD | Structured version Visualization version Unicode version | ||
| Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| istrkg2d.p |
|
| istrkg2d.d |
|
| istrkg2d.i |
|
| axtgupdim2OLD.x |
|
| axtgupdim2OLD.y |
|
| axtgupdim2OLD.z |
|
| axtgupdim2OLD.u |
|
| axtgupdim2OLD.v |
|
| axtgupdim2OLD.0 |
|
| axtgupdim2OLD.1 |
|
| axtgupdim2OLD.2 |
|
| axtgupdim2OLD.3 |
|
| axtgupdim2OLD.g |
|
| Ref | Expression |
|---|---|
| axtgupdim2OLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axtgupdim2OLD.1 |
. . 3
| |
| 2 | axtgupdim2OLD.2 |
. . 3
| |
| 3 | axtgupdim2OLD.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1242 |
. 2
|
| 5 | axtgupdim2OLD.0 |
. 2
| |
| 6 | axtgupdim2OLD.g |
. . . . . 6
| |
| 7 | istrkg2d.p |
. . . . . . 7
| |
| 8 | istrkg2d.d |
. . . . . . 7
| |
| 9 | istrkg2d.i |
. . . . . . 7
| |
| 10 | 7, 8, 9 | istrkg2d 30744 |
. . . . . 6
|
| 11 | 6, 10 | sylib 208 |
. . . . 5
|
| 12 | 11 | simprrd 797 |
. . . 4
|
| 13 | axtgupdim2OLD.x |
. . . . 5
| |
| 14 | axtgupdim2OLD.y |
. . . . 5
| |
| 15 | axtgupdim2OLD.z |
. . . . 5
| |
| 16 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 17 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 19 | 18 | 3anbi1d 1403 |
. . . . . . . . 9
|
| 20 | 19 | anbi1d 741 |
. . . . . . . 8
|
| 21 | oveq1 6657 |
. . . . . . . . . 10
| |
| 22 | 21 | eleq2d 2687 |
. . . . . . . . 9
|
| 23 | eleq1 2689 |
. . . . . . . . 9
| |
| 24 | oveq1 6657 |
. . . . . . . . . 10
| |
| 25 | 24 | eleq2d 2687 |
. . . . . . . . 9
|
| 26 | 22, 23, 25 | 3orbi123d 1398 |
. . . . . . . 8
|
| 27 | 20, 26 | imbi12d 334 |
. . . . . . 7
|
| 28 | 27 | 2ralbidv 2989 |
. . . . . 6
|
| 29 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 30 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 32 | 31 | 3anbi2d 1404 |
. . . . . . . . 9
|
| 33 | 32 | anbi1d 741 |
. . . . . . . 8
|
| 34 | oveq2 6658 |
. . . . . . . . . 10
| |
| 35 | 34 | eleq2d 2687 |
. . . . . . . . 9
|
| 36 | oveq2 6658 |
. . . . . . . . . 10
| |
| 37 | 36 | eleq2d 2687 |
. . . . . . . . 9
|
| 38 | eleq1 2689 |
. . . . . . . . 9
| |
| 39 | 35, 37, 38 | 3orbi123d 1398 |
. . . . . . . 8
|
| 40 | 33, 39 | imbi12d 334 |
. . . . . . 7
|
| 41 | 40 | 2ralbidv 2989 |
. . . . . 6
|
| 42 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 43 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 44 | 42, 43 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 45 | 44 | 3anbi3d 1405 |
. . . . . . . . 9
|
| 46 | 45 | anbi1d 741 |
. . . . . . . 8
|
| 47 | eleq1 2689 |
. . . . . . . . 9
| |
| 48 | oveq1 6657 |
. . . . . . . . . 10
| |
| 49 | 48 | eleq2d 2687 |
. . . . . . . . 9
|
| 50 | oveq2 6658 |
. . . . . . . . . 10
| |
| 51 | 50 | eleq2d 2687 |
. . . . . . . . 9
|
| 52 | 47, 49, 51 | 3orbi123d 1398 |
. . . . . . . 8
|
| 53 | 46, 52 | imbi12d 334 |
. . . . . . 7
|
| 54 | 53 | 2ralbidv 2989 |
. . . . . 6
|
| 55 | 28, 41, 54 | rspc3v 3325 |
. . . . 5
|
| 56 | 13, 14, 15, 55 | syl3anc 1326 |
. . . 4
|
| 57 | 12, 56 | mpd 15 |
. . 3
|
| 58 | axtgupdim2OLD.u |
. . . 4
| |
| 59 | axtgupdim2OLD.v |
. . . 4
| |
| 60 | oveq2 6658 |
. . . . . . . . 9
| |
| 61 | 60 | eqeq1d 2624 |
. . . . . . . 8
|
| 62 | oveq2 6658 |
. . . . . . . . 9
| |
| 63 | 62 | eqeq1d 2624 |
. . . . . . . 8
|
| 64 | oveq2 6658 |
. . . . . . . . 9
| |
| 65 | 64 | eqeq1d 2624 |
. . . . . . . 8
|
| 66 | 61, 63, 65 | 3anbi123d 1399 |
. . . . . . 7
|
| 67 | neeq1 2856 |
. . . . . . 7
| |
| 68 | 66, 67 | anbi12d 747 |
. . . . . 6
|
| 69 | 68 | imbi1d 331 |
. . . . 5
|
| 70 | oveq2 6658 |
. . . . . . . . 9
| |
| 71 | 70 | eqeq2d 2632 |
. . . . . . . 8
|
| 72 | oveq2 6658 |
. . . . . . . . 9
| |
| 73 | 72 | eqeq2d 2632 |
. . . . . . . 8
|
| 74 | oveq2 6658 |
. . . . . . . . 9
| |
| 75 | 74 | eqeq2d 2632 |
. . . . . . . 8
|
| 76 | 71, 73, 75 | 3anbi123d 1399 |
. . . . . . 7
|
| 77 | neeq2 2857 |
. . . . . . 7
| |
| 78 | 76, 77 | anbi12d 747 |
. . . . . 6
|
| 79 | 78 | imbi1d 331 |
. . . . 5
|
| 80 | 69, 79 | rspc2v 3322 |
. . . 4
|
| 81 | 58, 59, 80 | syl2anc 693 |
. . 3
|
| 82 | 57, 81 | mpd 15 |
. 2
|
| 83 | 4, 5, 82 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkg2d 30743 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |