Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mptval Structured version   Visualization version   Unicode version

Theorem bj-mptval 33070
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.)
Hypothesis
Ref Expression
bj-mptval.nf  |-  F/_ x A
Assertion
Ref Expression
bj-mptval  |-  ( A. x  e.  A  B  e.  V  ->  ( X  e.  A  ->  (
( ( x  e.  A  |->  B ) `  X )  =  Y  <-> 
X ( x  e.  A  |->  B ) Y ) ) )

Proof of Theorem bj-mptval
StepHypRef Expression
1 bj-mptval.nf . . 3  |-  F/_ x A
21fnmptf 6016 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
3 fnbrfvb 6236 . . 3  |-  ( ( ( x  e.  A  |->  B )  Fn  A  /\  X  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  X
)  =  Y  <->  X (
x  e.  A  |->  B ) Y ) )
43ex 450 . 2  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( X  e.  A  ->  ( ( ( x  e.  A  |->  B ) `
 X )  =  Y  <->  X ( x  e.  A  |->  B ) Y ) ) )
52, 4syl 17 1  |-  ( A. x  e.  A  B  e.  V  ->  ( X  e.  A  ->  (
( ( x  e.  A  |->  B ) `  X )  =  Y  <-> 
X ( x  e.  A  |->  B ) Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator