Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsngl Structured version   Visualization version   Unicode version

Theorem bj-elsngl 32956
Description: Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-elsngl  |-  ( A  e. sngl  B  <->  E. x  e.  B  A  =  { x } )
Distinct variable groups:    x, A    x, B

Proof of Theorem bj-elsngl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-clel 2618 . 2  |-  ( A  e. sngl  B  <->  E. y
( y  =  A  /\  y  e. sngl  B
) )
2 df-bj-sngl 32954 . . . . 5  |- sngl  B  =  { y  |  E. x  e.  B  y  =  { x } }
32abeq2i 2735 . . . 4  |-  ( y  e. sngl  B  <->  E. x  e.  B  y  =  { x } )
43anbi2i 730 . . 3  |-  ( ( y  =  A  /\  y  e. sngl  B )  <->  ( y  =  A  /\  E. x  e.  B  y  =  { x }
) )
54exbii 1774 . 2  |-  ( E. y ( y  =  A  /\  y  e. sngl  B )  <->  E. y
( y  =  A  /\  E. x  e.  B  y  =  {
x } ) )
6 r19.42v 3092 . . . . 5  |-  ( E. x  e.  B  ( y  =  A  /\  y  =  { x } )  <->  ( y  =  A  /\  E. x  e.  B  y  =  { x } ) )
76bicomi 214 . . . 4  |-  ( ( y  =  A  /\  E. x  e.  B  y  =  { x }
)  <->  E. x  e.  B  ( y  =  A  /\  y  =  {
x } ) )
87exbii 1774 . . 3  |-  ( E. y ( y  =  A  /\  E. x  e.  B  y  =  { x } )  <->  E. y E. x  e.  B  ( y  =  A  /\  y  =  { x } ) )
9 rexcom4 3225 . . . 4  |-  ( E. x  e.  B  E. y ( y  =  A  /\  y  =  { x } )  <->  E. y E. x  e.  B  ( y  =  A  /\  y  =  { x } ) )
109bicomi 214 . . 3  |-  ( E. y E. x  e.  B  ( y  =  A  /\  y  =  { x } )  <->  E. x  e.  B  E. y ( y  =  A  /\  y  =  { x } ) )
11 eqcom 2629 . . . . . 6  |-  ( A  =  { x }  <->  { x }  =  A )
12 snex 4908 . . . . . . 7  |-  { x }  e.  _V
1312eqvinc 3330 . . . . . 6  |-  ( { x }  =  A  <->  E. y ( y  =  { x }  /\  y  =  A )
)
14 exancom 1787 . . . . . 6  |-  ( E. y ( y  =  { x }  /\  y  =  A )  <->  E. y ( y  =  A  /\  y  =  { x } ) )
1511, 13, 143bitri 286 . . . . 5  |-  ( A  =  { x }  <->  E. y ( y  =  A  /\  y  =  { x } ) )
1615bicomi 214 . . . 4  |-  ( E. y ( y  =  A  /\  y  =  { x } )  <-> 
A  =  { x } )
1716rexbii 3041 . . 3  |-  ( E. x  e.  B  E. y ( y  =  A  /\  y  =  { x } )  <->  E. x  e.  B  A  =  { x } )
188, 10, 173bitri 286 . 2  |-  ( E. y ( y  =  A  /\  E. x  e.  B  y  =  { x } )  <->  E. x  e.  B  A  =  { x } )
191, 5, 183bitri 286 1  |-  ( A  e. sngl  B  <->  E. x  e.  B  A  =  { x } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   {csn 4177  sngl bj-csngl 32953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-bj-sngl 32954
This theorem is referenced by:  bj-snglc  32957  bj-snglss  32958  bj-0nelsngl  32959  bj-eltag  32965
  Copyright terms: Public domain W3C validator