|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elsngl | Structured version Visualization version Unicode version | ||
| Description: Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| bj-elsngl |       sngl                    | 
 ,
, 
    ,
,
 is distinct from all other
variables.
 is distinct from all other
variables.| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-clel 2618 | . 2       sngl                   sngl    | |
| 2 | df-bj-sngl 32954 | . . . . 5  sngl                         | |
| 3 | 2 | abeq2i 2735 | . . . 4       sngl                    | 
| 4 | 3 | anbi2i 730 | . . 3                sngl                               | 
| 5 | 4 | exbii 1774 | . 2                  sngl                                 | 
| 6 | r19.42v 3092 | . . . . 5                                                        | |
| 7 | 6 | bicomi 214 | . . . 4                                                        | 
| 8 | 7 | exbii 1774 | . . 3                                                            | 
| 9 | rexcom4 3225 | . . . 4                                                            | |
| 10 | 9 | bicomi 214 | . . 3                                                            | 
| 11 | eqcom 2629 | . . . . . 6                      | |
| 12 | snex 4908 | . . . . . . 7          | |
| 13 | 12 | eqvinc 3330 | . . . . . 6                                  | 
| 14 | exancom 1787 | . . . . . 6                                              | |
| 15 | 11, 13, 14 | 3bitri 286 | . . . . 5                                  | 
| 16 | 15 | bicomi 214 | . . . 4                                  | 
| 17 | 16 | rexbii 3041 | . . 3                                                | 
| 18 | 8, 10, 17 | 3bitri 286 | . 2                                                | 
| 19 | 1, 5, 18 | 3bitri 286 | 1       sngl                    | 
| Colors of variables: wff setvar class | 
| Syntax hints:  wb 196  wa 384  wceq 1483  wex 1704  wcel 1990  wrex 2913  csn 4177
 sngl bj-csngl 32953 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 | 
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-bj-sngl 32954 | 
| This theorem is referenced by: bj-snglc 32957 bj-snglss 32958 bj-0nelsngl 32959 bj-eltag 32965 | 
| Copyright terms: Public domain | W3C validator |