| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglc | Structured version Visualization version Unicode version | ||
| Description: Characterization of the
elements of |
| Ref | Expression |
|---|---|
| bj-snglc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2918 |
. 2
| |
| 2 | bj-elsngl 32956 |
. 2
| |
| 3 | elisset 3215 |
. . . . 5
| |
| 4 | 3 | pm4.71i 664 |
. . . 4
|
| 5 | 19.42v 1918 |
. . . 4
| |
| 6 | eleq1 2689 |
. . . . . . 7
| |
| 7 | 6 | eqcoms 2630 |
. . . . . 6
|
| 8 | 7 | pm5.32ri 670 |
. . . . 5
|
| 9 | 8 | exbii 1774 |
. . . 4
|
| 10 | 4, 5, 9 | 3bitr2i 288 |
. . 3
|
| 11 | vex 3203 |
. . . . . . 7
| |
| 12 | sneqbg 4374 |
. . . . . . 7
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
|
| 14 | eqcom 2629 |
. . . . . 6
| |
| 15 | 13, 14 | bitr3i 266 |
. . . . 5
|
| 16 | 15 | anbi2i 730 |
. . . 4
|
| 17 | 16 | exbii 1774 |
. . 3
|
| 18 | 10, 17 | bitri 264 |
. 2
|
| 19 | 1, 2, 18 | 3bitr4ri 293 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-bj-sngl 32954 |
| This theorem is referenced by: bj-snglinv 32960 bj-tagci 32972 bj-tagcg 32973 |
| Copyright terms: Public domain | W3C validator |