Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-discrmoore Structured version   Visualization version   Unicode version

Theorem bj-discrmoore 33066
Description: The discrete Moore collection on a set. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-discrmoore  |-  ( A  e.  _V  <->  ~P A  e. Moore_ )

Proof of Theorem bj-discrmoore
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . 3  |-  ( A  e.  _V  ->  ~P A  e.  _V )
2 unipw 4918 . . . . . 6  |-  U. ~P A  =  A
32ineq1i 3810 . . . . 5  |-  ( U. ~P A  i^i  |^| x
)  =  ( A  i^i  |^| x )
4 inex1g 4801 . . . . . 6  |-  ( A  e.  _V  ->  ( A  i^i  |^| x )  e. 
_V )
5 inss1 3833 . . . . . . 7  |-  ( A  i^i  |^| x )  C_  A
65a1i 11 . . . . . 6  |-  ( A  e.  _V  ->  ( A  i^i  |^| x )  C_  A )
74, 6elpwd 4167 . . . . 5  |-  ( A  e.  _V  ->  ( A  i^i  |^| x )  e. 
~P A )
83, 7syl5eqel 2705 . . . 4  |-  ( A  e.  _V  ->  ( U. ~P A  i^i  |^| x )  e.  ~P A )
98adantr 481 . . 3  |-  ( ( A  e.  _V  /\  x  C_  ~P A )  ->  ( U. ~P A  i^i  |^| x )  e. 
~P A )
101, 9bj-ismooredr 33064 . 2  |-  ( A  e.  _V  ->  ~P A  e. Moore_ )
11 pwexr 6974 . 2  |-  ( ~P A  e. Moore_  ->  A  e. 
_V )
1210, 11impbii 199 1  |-  ( A  e.  _V  <->  ~P A  e. Moore_ )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-bj-moore 33058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator