MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloval Structured version   Visualization version   Unicode version

Theorem bloval 27636
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3  |-  N  =  ( U normOpOLD W
)
bloval.4  |-  L  =  ( U  LnOp  W
)
bloval.5  |-  B  =  ( U  BLnOp  W )
Assertion
Ref Expression
bloval  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  B  =  { t  e.  L  |  ( N `  t )  < +oo } )
Distinct variable groups:    t, L    t, N    t, U    t, W
Allowed substitution hint:    B( t)

Proof of Theorem bloval
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bloval.5 . 2  |-  B  =  ( U  BLnOp  W )
2 oveq1 6657 . . . 4  |-  ( u  =  U  ->  (
u  LnOp  w )  =  ( U  LnOp  w ) )
3 oveq1 6657 . . . . . 6  |-  ( u  =  U  ->  (
u normOpOLD w )  =  ( U normOpOLD w
) )
43fveq1d 6193 . . . . 5  |-  ( u  =  U  ->  (
( u normOpOLD w
) `  t )  =  ( ( U
normOpOLD w ) `  t ) )
54breq1d 4663 . . . 4  |-  ( u  =  U  ->  (
( ( u normOpOLD w ) `  t
)  < +oo  <->  ( ( U normOpOLD w ) `  t )  < +oo ) )
62, 5rabeqbidv 3195 . . 3  |-  ( u  =  U  ->  { t  e.  ( u  LnOp  w )  |  ( ( u normOpOLD w ) `  t )  < +oo }  =  { t  e.  ( U  LnOp  w
)  |  ( ( U normOpOLD w ) `  t )  < +oo } )
7 oveq2 6658 . . . . 5  |-  ( w  =  W  ->  ( U  LnOp  w )  =  ( U  LnOp  W
) )
8 bloval.4 . . . . 5  |-  L  =  ( U  LnOp  W
)
97, 8syl6eqr 2674 . . . 4  |-  ( w  =  W  ->  ( U  LnOp  w )  =  L )
10 oveq2 6658 . . . . . . 7  |-  ( w  =  W  ->  ( U normOpOLD w )  =  ( U normOpOLD W
) )
11 bloval.3 . . . . . . 7  |-  N  =  ( U normOpOLD W
)
1210, 11syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( U normOpOLD w )  =  N )
1312fveq1d 6193 . . . . 5  |-  ( w  =  W  ->  (
( U normOpOLD w
) `  t )  =  ( N `  t ) )
1413breq1d 4663 . . . 4  |-  ( w  =  W  ->  (
( ( U normOpOLD w ) `  t
)  < +oo  <->  ( N `  t )  < +oo ) )
159, 14rabeqbidv 3195 . . 3  |-  ( w  =  W  ->  { t  e.  ( U  LnOp  w )  |  ( ( U normOpOLD w ) `  t )  < +oo }  =  { t  e.  L  |  ( N `
 t )  < +oo } )
16 df-blo 27601 . . 3  |-  BLnOp  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  { t  e.  ( u  LnOp  w
)  |  ( ( u normOpOLD w ) `  t )  < +oo } )
17 ovex 6678 . . . . 5  |-  ( U 
LnOp  W )  e.  _V
188, 17eqeltri 2697 . . . 4  |-  L  e. 
_V
1918rabex 4813 . . 3  |-  { t  e.  L  |  ( N `  t )  < +oo }  e.  _V
206, 15, 16, 19ovmpt2 6796 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U  BLnOp  W )  =  { t  e.  L  |  ( N `  t )  < +oo } )
211, 20syl5eq 2668 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  B  =  { t  e.  L  |  ( N `  t )  < +oo } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   +oocpnf 10071    < clt 10074   NrmCVeccnv 27439    LnOp clno 27595   normOpOLDcnmoo 27596    BLnOp cblo 27597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-blo 27601
This theorem is referenced by:  isblo  27637  hhbloi  28761
  Copyright terms: Public domain W3C validator