Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Visualization version   Unicode version

Theorem bnj1029 31036
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R ) )

Proof of Theorem bnj1029
Dummy variables  f 
i  m  n  p  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 251 . 2  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 biid 251 . 2  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
3 biid 251 . 2  |-  ( ( n  e.  ( om 
\  { (/) } )  /\  f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
4 biid 251 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) )  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e. 
trCl ( X ,  A ,  R )  /\  z  e.  pred ( y ,  A ,  R ) ) )
5 biid 251 . 2  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n )  <-> 
( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
6 biid 251 . 2  |-  ( ( i  e.  n  /\  y  e.  ( f `  i ) )  <->  ( i  e.  n  /\  y  e.  ( f `  i
) ) )
7 biid 251 . 2  |-  ( [. p  /  n ]. (
f `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. p  /  n ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
8 biid 251 . 2  |-  ( [. p  /  n ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  [. p  /  n ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
9 biid 251 . 2  |-  ( [. p  /  n ]. (
n  e.  ( om 
\  { (/) } )  /\  f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  [. p  /  n ]. ( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
10 biid 251 . 2  |-  ( [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
11 biid 251 . 2  |-  ( [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
12 biid 251 . 2  |-  ( [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  [. ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )  /  f ]. [. p  /  n ]. ( n  e.  ( om  \  { (/) } )  /\  f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
13 eqid 2622 . 2  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
14 eqid 2622 . 2  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
15 eqid 2622 . 2  |-  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
16 eqid 2622 . 2  |-  ( f  u.  { <. n ,  U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
>. } )  =  ( f  u.  { <. n ,  U_ y  e.  ( f `  m
)  pred ( y ,  A ,  R )
>. } )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 31035 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  TrFo (  trCl ( X ,  A ,  R ) ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   [.wsbc 3435    \ cdif 3571    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760    TrFow-bnj19 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1125  31060
  Copyright terms: Public domain W3C validator