| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1245 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1245.1 |
|
| bnj1245.2 |
|
| bnj1245.3 |
|
| bnj1245.4 |
|
| bnj1245.5 |
|
| bnj1245.6 |
|
| bnj1245.7 |
|
| bnj1245.8 |
|
| bnj1245.9 |
|
| Ref | Expression |
|---|---|
| bnj1245 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1245.6 |
. . . 4
| |
| 2 | 1 | bnj1247 30879 |
. . 3
|
| 3 | bnj1245.2 |
. . . 4
| |
| 4 | bnj1245.3 |
. . . 4
| |
| 5 | bnj1245.8 |
. . . 4
| |
| 6 | bnj1245.9 |
. . . 4
| |
| 7 | 3, 4, 5, 6 | bnj1234 31081 |
. . 3
|
| 8 | 2, 7 | syl6eleq 2711 |
. 2
|
| 9 | 6 | abeq2i 2735 |
. . . . . 6
|
| 10 | 9 | bnj1238 30877 |
. . . . 5
|
| 11 | 10 | bnj1196 30865 |
. . . 4
|
| 12 | bnj1245.1 |
. . . . . . 7
| |
| 13 | 12 | abeq2i 2735 |
. . . . . 6
|
| 14 | 13 | simplbi 476 |
. . . . 5
|
| 15 | fndm 5990 |
. . . . 5
| |
| 16 | 14, 15 | bnj1241 30878 |
. . . 4
|
| 17 | 11, 16 | bnj593 30815 |
. . 3
|
| 18 | 17 | bnj937 30842 |
. 2
|
| 19 | 8, 18 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-bnj17 30753 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |