Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1234 Structured version   Visualization version   Unicode version

Theorem bnj1234 31081
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1234.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1234.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1234.4  |-  Z  = 
<. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
bnj1234.5  |-  D  =  { g  |  E. d  e.  B  (
g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }
Assertion
Ref Expression
bnj1234  |-  C  =  D
Distinct variable groups:    B, f,
g    f, G, g    g, Y    f, Z    f, d,
g    x, f, g
Allowed substitution hints:    A( x, f, g, d)    B( x, d)    C( x, f, g, d)    D( x, f, g, d)    R( x, f, g, d)    G( x, d)    Y( x, f, d)    Z( x, g, d)

Proof of Theorem bnj1234
StepHypRef Expression
1 fneq1 5979 . . . . 5  |-  ( f  =  g  ->  (
f  Fn  d  <->  g  Fn  d ) )
2 fveq1 6190 . . . . . . 7  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
3 reseq1 5390 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f  |`  pred ( x ,  A ,  R ) )  =  ( g  |`  pred ( x ,  A ,  R ) ) )
43opeq2d 4409 . . . . . . . . 9  |-  ( f  =  g  ->  <. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.  =  <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
5 bnj1234.2 . . . . . . . . 9  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
6 bnj1234.4 . . . . . . . . 9  |-  Z  = 
<. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
74, 5, 63eqtr4g 2681 . . . . . . . 8  |-  ( f  =  g  ->  Y  =  Z )
87fveq2d 6195 . . . . . . 7  |-  ( f  =  g  ->  ( G `  Y )  =  ( G `  Z ) )
92, 8eqeq12d 2637 . . . . . 6  |-  ( f  =  g  ->  (
( f `  x
)  =  ( G `
 Y )  <->  ( g `  x )  =  ( G `  Z ) ) )
109ralbidv 2986 . . . . 5  |-  ( f  =  g  ->  ( A. x  e.  d 
( f `  x
)  =  ( G `
 Y )  <->  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) )
111, 10anbi12d 747 . . . 4  |-  ( f  =  g  ->  (
( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )  <-> 
( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 Z ) ) ) )
1211rexbidv 3052 . . 3  |-  ( f  =  g  ->  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )  <->  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 Z ) ) ) )
1312cbvabv 2747 . 2  |-  { f  |  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }  =  {
g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }
14 bnj1234.3 . 2  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
15 bnj1234.5 . 2  |-  D  =  { g  |  E. d  e.  B  (
g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }
1613, 14, 153eqtr4i 2654 1  |-  C  =  D
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   {cab 2608   A.wral 2912   E.wrex 2913   <.cop 4183    |` cres 5116    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  bnj1245  31082  bnj1256  31083  bnj1259  31084  bnj1296  31089  bnj1311  31092
  Copyright terms: Public domain W3C validator