Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1318 Structured version   Visualization version   Unicode version

Theorem bnj1318 31093
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1318  |-  ( X  =  Y  ->  trCl ( X ,  A ,  R )  =  trCl ( Y ,  A ,  R ) )

Proof of Theorem bnj1318
Dummy variables  f 
i  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj602 30985 . . . . . . 7  |-  ( X  =  Y  ->  pred ( X ,  A ,  R )  =  pred ( Y ,  A ,  R ) )
21eqeq2d 2632 . . . . . 6  |-  ( X  =  Y  ->  (
( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( Y ,  A ,  R )
) )
323anbi2d 1404 . . . . 5  |-  ( X  =  Y  ->  (
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) ) )
43rexbidv 3052 . . . 4  |-  ( X  =  Y  ->  ( E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) ) )
54abbidv 2741 . . 3  |-  ( X  =  Y  ->  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } )
6 hbab1 2611 . . . 4  |-  ( z  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  A. f 
z  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } )
7 hbab1 2611 . . . 4  |-  ( z  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  A. f 
z  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } )
86, 7bnj1316 30891 . . 3  |-  ( { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  U_ f  e. 
{ f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  = 
U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i ) )
95, 8syl 17 . 2  |-  ( X  =  Y  ->  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  = 
U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i ) )
10 biid 251 . . 3  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
11 biid 251 . . 3  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
12 eqid 2622 . . 3  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
13 eqid 2622 . . 3  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
1410, 11, 12, 13bnj882 30996 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
15 biid 251 . . 3  |-  ( ( f `  (/) )  = 
pred ( Y ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( Y ,  A ,  R )
)
16 eqid 2622 . . 3  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
1715, 11, 12, 16bnj882 30996 . 2  |-  trCl ( Y ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( Y ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
189, 14, 173eqtr4g 2681 1  |-  ( X  =  Y  ->  trCl ( X ,  A ,  R )  =  trCl ( Y ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    \ cdif 3571   (/)c0 3915   {csn 4177   U_ciun 4520   dom cdm 5114   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    predc-bnj14 30754    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-bnj14 30755  df-bnj18 30761
This theorem is referenced by:  bnj1373  31098  bnj1408  31104  bnj1417  31109  bnj1489  31124
  Copyright terms: Public domain W3C validator