Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1373 Structured version   Visualization version   Unicode version

Theorem bnj1373 31098
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1373.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1373.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1373.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1373.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1373.5  |-  ( ta'  <->  [. y  /  x ]. ta )
Assertion
Ref Expression
bnj1373  |-  ( ta'  <->  (
f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
Distinct variable groups:    x, A    B, f    x, R    f,
d, x    x, y
Allowed substitution hints:    ta( x, y, f, d)    A( y, f, d)    B( x, y, d)    C( x, y, f, d)    R( y, f, d)    G( x, y, f, d)    Y( x, y, f, d)    ta'( x, y, f, d)

Proof of Theorem bnj1373
StepHypRef Expression
1 bnj1373.5 . 2  |-  ( ta'  <->  [. y  /  x ]. ta )
2 vex 3203 . . 3  |-  y  e. 
_V
3 bnj1373.3 . . . . . . 7  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
4 bnj1373.1 . . . . . . . 8  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
54bnj1309 31090 . . . . . . 7  |-  ( f  e.  B  ->  A. x  f  e.  B )
63, 5bnj1307 31091 . . . . . 6  |-  ( f  e.  C  ->  A. x  f  e.  C )
76bnj1351 30897 . . . . 5  |-  ( ( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) )  ->  A. x ( f  e.  C  /\  dom  f  =  ( {
y }  u.  trCl ( y ,  A ,  R ) ) ) )
87nf5i 2024 . . . 4  |-  F/ x
( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) )
9 bnj1373.4 . . . . 5  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
10 sneq 4187 . . . . . . . 8  |-  ( x  =  y  ->  { x }  =  { y } )
11 bnj1318 31093 . . . . . . . 8  |-  ( x  =  y  ->  trCl (
x ,  A ,  R )  =  trCl ( y ,  A ,  R ) )
1210, 11uneq12d 3768 . . . . . . 7  |-  ( x  =  y  ->  ( { x }  u.  trCl ( x ,  A ,  R ) )  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) )
1312eqeq2d 2632 . . . . . 6  |-  ( x  =  y  ->  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  <->  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
1413anbi2d 740 . . . . 5  |-  ( x  =  y  ->  (
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )  <-> 
( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) ) )
159, 14syl5bb 272 . . . 4  |-  ( x  =  y  ->  ( ta 
<->  ( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) ) )
168, 15sbciegf 3467 . . 3  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ta  <->  ( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl (
y ,  A ,  R ) ) ) ) )
172, 16ax-mp 5 . 2  |-  ( [. y  /  x ]. ta  <->  ( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
181, 17bitri 264 1  |-  ( ta'  <->  (
f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200   [.wsbc 3435    u. cun 3572    C_ wss 3574   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-bnj14 30755  df-bnj18 30761
This theorem is referenced by:  bnj1374  31099  bnj1384  31100  bnj1398  31102  bnj1450  31118  bnj1489  31124
  Copyright terms: Public domain W3C validator