| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1385 | Structured version Visualization version Unicode version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1385.1 |
|
| bnj1385.2 |
|
| bnj1385.3 |
|
| bnj1385.4 |
|
| bnj1385.5 |
|
| bnj1385.6 |
|
| bnj1385.7 |
|
| Ref | Expression |
|---|---|
| bnj1385 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . . . 7
| |
| 2 | bnj1385.4 |
. . . . . . . . . 10
| |
| 3 | 2 | nfcii 2755 |
. . . . . . . . 9
|
| 4 | 3 | nfcri 2758 |
. . . . . . . 8
|
| 5 | nfv 1843 |
. . . . . . . 8
| |
| 6 | 4, 5 | nfim 1825 |
. . . . . . 7
|
| 7 | eleq1 2689 |
. . . . . . . 8
| |
| 8 | funeq 5908 |
. . . . . . . 8
| |
| 9 | 7, 8 | imbi12d 334 |
. . . . . . 7
|
| 10 | 1, 6, 9 | cbval 2271 |
. . . . . 6
|
| 11 | df-ral 2917 |
. . . . . 6
| |
| 12 | df-ral 2917 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3bitr4i 292 |
. . . . 5
|
| 14 | bnj1385.1 |
. . . . 5
| |
| 15 | bnj1385.5 |
. . . . 5
| |
| 16 | 13, 14, 15 | 3bitr4i 292 |
. . . 4
|
| 17 | nfv 1843 |
. . . . . 6
| |
| 18 | nfv 1843 |
. . . . . . . 8
| |
| 19 | 3, 18 | nfral 2945 |
. . . . . . 7
|
| 20 | 4, 19 | nfim 1825 |
. . . . . 6
|
| 21 | dmeq 5324 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | ineq1d 3813 |
. . . . . . . . . . . 12
|
| 23 | bnj1385.2 |
. . . . . . . . . . . 12
| |
| 24 | bnj1385.6 |
. . . . . . . . . . . 12
| |
| 25 | 22, 23, 24 | 3eqtr4g 2681 |
. . . . . . . . . . 11
|
| 26 | 25 | reseq2d 5396 |
. . . . . . . . . 10
|
| 27 | reseq1 5390 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqtrd 2656 |
. . . . . . . . 9
|
| 29 | 25 | reseq2d 5396 |
. . . . . . . . 9
|
| 30 | 28, 29 | eqeq12d 2637 |
. . . . . . . 8
|
| 31 | 30 | ralbidv 2986 |
. . . . . . 7
|
| 32 | 7, 31 | imbi12d 334 |
. . . . . 6
|
| 33 | 17, 20, 32 | cbval 2271 |
. . . . 5
|
| 34 | df-ral 2917 |
. . . . 5
| |
| 35 | df-ral 2917 |
. . . . 5
| |
| 36 | 33, 34, 35 | 3bitr4i 292 |
. . . 4
|
| 37 | 16, 36 | anbi12i 733 |
. . 3
|
| 38 | bnj1385.3 |
. . 3
| |
| 39 | bnj1385.7 |
. . 3
| |
| 40 | 37, 38, 39 | 3bitr4i 292 |
. 2
|
| 41 | 15, 24, 39 | bnj1383 30902 |
. 2
|
| 42 | 40, 41 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: bnj1386 30904 |
| Copyright terms: Public domain | W3C validator |