Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1312 Structured version   Visualization version   Unicode version

Theorem bnj1312 31126
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1312.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1312.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1312.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1312.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1312.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1312.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1312.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1312.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1312.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1312.10  |-  P  = 
U. H
bnj1312.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1312.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1312.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
bnj1312.14  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj1312  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
Distinct variable groups:    A, d,
f, x, y, z    B, f    y, C    y, D    E, d, f, y, z    G, d, f, x, y, z    z, Q    R, d, f, x, y, z    z, Y    ch, z    ps, y    ta, y
Allowed substitution hints:    ps( x, z, f, d)    ch( x, y, f, d)    ta( x, z, f, d)    B( x, y, z, d)    C( x, z, f, d)    D( x, z, f, d)    P( x, y, z, f, d)    Q( x, y, f, d)    E( x)    H( x, y, z, f, d)    W( x, y, z, f, d)    Y( x, y, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1312
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj1312.5 . . 3  |-  D  =  { x  e.  A  |  -.  E. f ta }
2 bnj1312.6 . . . 4  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
32simplbi 476 . . . . . . 7  |-  ( ps 
->  R  FrSe  A )
41ssrab3 3688 . . . . . . . 8  |-  D  C_  A
54a1i 11 . . . . . . 7  |-  ( ps 
->  D  C_  A )
62simprbi 480 . . . . . . 7  |-  ( ps 
->  D  =/=  (/) )
71bnj1230 30873 . . . . . . . 8  |-  ( w  e.  D  ->  A. x  w  e.  D )
87bnj1228 31079 . . . . . . 7  |-  ( ( R  FrSe  A  /\  D  C_  A  /\  D  =/=  (/) )  ->  E. x  e.  D  A. y  e.  D  -.  y R x )
93, 5, 6, 8syl3anc 1326 . . . . . 6  |-  ( ps 
->  E. x  e.  D  A. y  e.  D  -.  y R x )
10 bnj1312.7 . . . . . 6  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
11 nfv 1843 . . . . . . . . 9  |-  F/ x  R  FrSe  A
127nfcii 2755 . . . . . . . . . 10  |-  F/_ x D
13 nfcv 2764 . . . . . . . . . 10  |-  F/_ x (/)
1412, 13nfne 2894 . . . . . . . . 9  |-  F/ x  D  =/=  (/)
1511, 14nfan 1828 . . . . . . . 8  |-  F/ x
( R  FrSe  A  /\  D  =/=  (/) )
162, 15nfxfr 1779 . . . . . . 7  |-  F/ x ps
1716nf5ri 2065 . . . . . 6  |-  ( ps 
->  A. x ps )
189, 10, 17bnj1521 30921 . . . . 5  |-  ( ps 
->  E. x ch )
1910simp2bi 1077 . . . . 5  |-  ( ch 
->  x  e.  D
)
201bnj1538 30925 . . . . . 6  |-  ( x  e.  D  ->  -.  E. f ta )
21 bnj1312.1 . . . . . . . . 9  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
22 bnj1312.2 . . . . . . . . 9  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
23 bnj1312.3 . . . . . . . . 9  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
24 bnj1312.4 . . . . . . . . 9  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
25 bnj1312.8 . . . . . . . . 9  |-  ( ta'  <->  [. y  /  x ]. ta )
26 bnj1312.9 . . . . . . . . 9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
27 bnj1312.10 . . . . . . . . 9  |-  P  = 
U. H
28 bnj1312.11 . . . . . . . . 9  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
29 bnj1312.12 . . . . . . . . 9  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
3021, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29bnj1489 31124 . . . . . . . 8  |-  ( ch 
->  Q  e.  _V )
31 bnj1312.13 . . . . . . . . . . 11  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
32 bnj1312.14 . . . . . . . . . . 11  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
3310, 3bnj835 30829 . . . . . . . . . . . . . 14  |-  ( ch 
->  R  FrSe  A )
3421, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1384 31100 . . . . . . . . . . . . . 14  |-  ( R 
FrSe  A  ->  Fun  P
)
3533, 34syl 17 . . . . . . . . . . . . 13  |-  ( ch 
->  Fun  P )
3621, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1415 31106 . . . . . . . . . . . . 13  |-  ( ch 
->  dom  P  =  trCl ( x ,  A ,  R ) )
3735, 36bnj1422 30908 . . . . . . . . . . . 12  |-  ( ch 
->  P  Fn  trCl (
x ,  A ,  R ) )
3821, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 36bnj1416 31107 . . . . . . . . . . . . . 14  |-  ( ch 
->  dom  Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
3921, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 35, 38, 36bnj1421 31110 . . . . . . . . . . . . 13  |-  ( ch 
->  Fun  Q )
4039, 38bnj1422 30908 . . . . . . . . . . . 12  |-  ( ch 
->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
4121, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 37, 40bnj1423 31119 . . . . . . . . . . 11  |-  ( ch 
->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )
4232fneq2i 5986 . . . . . . . . . . . 12  |-  ( Q  Fn  E  <->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
4340, 42sylibr 224 . . . . . . . . . . 11  |-  ( ch 
->  Q  Fn  E
)
4421, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32bnj1452 31120 . . . . . . . . . . 11  |-  ( ch 
->  E  e.  B
)
4521, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 30, 41, 43, 44bnj1463 31123 . . . . . . . . . 10  |-  ( ch 
->  Q  e.  C
)
4645, 38jca 554 . . . . . . . . 9  |-  ( ch 
->  ( Q  e.  C  /\  dom  Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
4721, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 46bnj1491 31125 . . . . . . . 8  |-  ( ( ch  /\  Q  e. 
_V )  ->  E. f
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
4830, 47mpdan 702 . . . . . . 7  |-  ( ch 
->  E. f ( f  e.  C  /\  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) ) ) )
4948, 24bnj1198 30866 . . . . . 6  |-  ( ch 
->  E. f ta )
5020, 49nsyl3 133 . . . . 5  |-  ( ch 
->  -.  x  e.  D
)
5118, 19, 50bnj1304 30890 . . . 4  |-  -.  ps
522, 51bnj1541 30926 . . 3  |-  ( R 
FrSe  A  ->  D  =  (/) )
531, 52bnj1476 30917 . 2  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f ta )
5424exbii 1774 . . . 4  |-  ( E. f ta  <->  E. f
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
55 df-rex 2918 . . . 4  |-  ( E. f  e.  C  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) )  <->  E. f
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
5654, 55bitr4i 267 . . 3  |-  ( E. f ta  <->  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
5756ralbii 2980 . 2  |-  ( A. x  e.  A  E. f ta  <->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
5853, 57sylib 208 1  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [.wsbc 3435    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1493  31127
  Copyright terms: Public domain W3C validator