Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj548 Structured version   Visualization version   Unicode version

Theorem bnj548 30967
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj548.1  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj548.2  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj548.3  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj548.4  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj548.5  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Assertion
Ref Expression
bnj548  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  B  =  K )
Distinct variable groups:    y, G    y, f    y, i
Allowed substitution hints:    ta( y, f, i, m, n)    si( y,
f, i, m, n)    A( y, f, i, m, n)    B( y, f, i, m, n)    C( y,
f, i, m, n)    R( y, f, i, m, n)    G( f, i, m, n)    K( y, f, i, m, n)    ph'( y, f, i, m, n)    ps'( y, f, i, m, n)

Proof of Theorem bnj548
StepHypRef Expression
1 bnj548.5 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
21bnj930 30840 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  Fun  G )
32adantr 481 . . . . 5  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  Fun  G )
4 bnj548.1 . . . . . . . 8  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
54simp1bi 1076 . . . . . . 7  |-  ( ta 
->  f  Fn  m
)
6 fndm 5990 . . . . . . . 8  |-  ( f  Fn  m  ->  dom  f  =  m )
7 eleq2 2690 . . . . . . . . 9  |-  ( dom  f  =  m  -> 
( i  e.  dom  f 
<->  i  e.  m ) )
87biimpar 502 . . . . . . . 8  |-  ( ( dom  f  =  m  /\  i  e.  m
)  ->  i  e.  dom  f )
96, 8sylan 488 . . . . . . 7  |-  ( ( f  Fn  m  /\  i  e.  m )  ->  i  e.  dom  f
)
105, 9sylan 488 . . . . . 6  |-  ( ( ta  /\  i  e.  m )  ->  i  e.  dom  f )
11103ad2antl2 1224 . . . . 5  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  i  e.  dom  f )
123, 11jca 554 . . . 4  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  ( Fun  G  /\  i  e.  dom  f ) )
13 bnj548.4 . . . . 5  |-  G  =  ( f  u.  { <. m ,  C >. } )
1413bnj931 30841 . . . 4  |-  f  C_  G
1512, 14jctil 560 . . 3  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  ( f  C_  G  /\  ( Fun 
G  /\  i  e.  dom  f ) ) )
16 3anan12 1051 . . 3  |-  ( ( Fun  G  /\  f  C_  G  /\  i  e. 
dom  f )  <->  ( f  C_  G  /\  ( Fun 
G  /\  i  e.  dom  f ) ) )
1715, 16sylibr 224 . 2  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  ( Fun  G  /\  f  C_  G  /\  i  e.  dom  f ) )
18 funssfv 6209 . 2  |-  ( ( Fun  G  /\  f  C_  G  /\  i  e. 
dom  f )  -> 
( G `  i
)  =  ( f `
 i ) )
19 iuneq1 4534 . . . 4  |-  ( ( G `  i )  =  ( f `  i )  ->  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
2019eqcomd 2628 . . 3  |-  ( ( G `  i )  =  ( f `  i )  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
21 bnj548.2 . . 3  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
22 bnj548.3 . . 3  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
2320, 21, 223eqtr4g 2681 . 2  |-  ( ( G `  i )  =  ( f `  i )  ->  B  =  K )
2417, 18, 233syl 18 1  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  B  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   {csn 4177   <.cop 4183   U_ciun 4520   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  bnj553  30968
  Copyright terms: Public domain W3C validator