Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj553 Structured version   Visualization version   Unicode version

Theorem bnj553 30968
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj553.1  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj553.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj553.3  |-  D  =  ( om  \  { (/)
} )
bnj553.4  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj553.5  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj553.6  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj553.7  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
bnj553.8  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj553.9  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj553.10  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj553.11  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
bnj553.12  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Assertion
Ref Expression
bnj553  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  ( G `  m )  =  L )
Distinct variable groups:    A, i, p, y    y, G    R, i, p, y    f, i, p, y    i, m, p    p, ph'
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    A( x, f, m, n)    B( x, y, f, i, m, n, p)    C( x, y, f, i, m, n, p)    D( x, y, f, i, m, n, p)    R( x, f, m, n)    G( x, f, i, m, n, p)    K( x, y, f, i, m, n, p)    L( x, y, f, i, m, n, p)    ph'( x, y, f, i, m, n)    ps'( x, y, f, i, m, n, p)

Proof of Theorem bnj553
StepHypRef Expression
1 bnj553.12 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
21bnj930 30840 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  Fun  G )
3 opex 4932 . . . . . . 7  |-  <. m ,  C >.  e.  _V
43snid 4208 . . . . . 6  |-  <. m ,  C >.  e.  { <. m ,  C >. }
5 elun2 3781 . . . . . 6  |-  ( <.
m ,  C >.  e. 
{ <. m ,  C >. }  ->  <. m ,  C >.  e.  (
f  u.  { <. m ,  C >. } ) )
64, 5ax-mp 5 . . . . 5  |-  <. m ,  C >.  e.  (
f  u.  { <. m ,  C >. } )
7 bnj553.8 . . . . 5  |-  G  =  ( f  u.  { <. m ,  C >. } )
86, 7eleqtrri 2700 . . . 4  |-  <. m ,  C >.  e.  G
9 funopfv 6235 . . . 4  |-  ( Fun 
G  ->  ( <. m ,  C >.  e.  G  ->  ( G `  m
)  =  C ) )
102, 8, 9mpisyl 21 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  si )  -> 
( G `  m
)  =  C )
11103ad2ant1 1082 . 2  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  ( G `  m )  =  C )
12 fveq2 6191 . . . . . 6  |-  ( p  =  i  ->  ( G `  p )  =  ( G `  i ) )
1312bnj1113 30856 . . . . 5  |-  ( p  =  i  ->  U_ y  e.  ( G `  p
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
14 bnj553.11 . . . . 5  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
15 bnj553.10 . . . . 5  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
1613, 14, 153eqtr4g 2681 . . . 4  |-  ( p  =  i  ->  L  =  K )
17163ad2ant3 1084 . . 3  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  L  =  K )
18 bnj553.5 . . . . 5  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
19 bnj553.9 . . . . 5  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
20 bnj553.4 . . . . 5  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
2118, 19, 15, 20, 1bnj548 30967 . . . 4  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  B  =  K )
22213adant3 1081 . . 3  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  B  =  K )
23 fveq2 6191 . . . . . 6  |-  ( p  =  i  ->  (
f `  p )  =  ( f `  i ) )
2423bnj1113 30856 . . . . 5  |-  ( p  =  i  ->  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
25 bnj553.7 . . . . . . 7  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
2619, 25eqeq12i 2636 . . . . . 6  |-  ( B  =  C  <->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R ) )
27 eqcom 2629 . . . . . 6  |-  ( U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  =  U_ y  e.  ( f `  p )  pred (
y ,  A ,  R )  <->  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
2826, 27bitri 264 . . . . 5  |-  ( B  =  C  <->  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
2924, 28sylibr 224 . . . 4  |-  ( p  =  i  ->  B  =  C )
30293ad2ant3 1084 . . 3  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  B  =  C )
3117, 22, 303eqtr2rd 2663 . 2  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  C  =  L )
3211, 31eqtrd 2656 1  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m  /\  p  =  i
)  ->  ( G `  m )  =  L )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   omcom 7065    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  bnj557  30971
  Copyright terms: Public domain W3C validator