| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj96 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj150 30946. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj96.1 |
|
| Ref | Expression |
|---|---|
| bnj96 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj93 30933 |
. . 3
| |
| 2 | dmsnopg 5606 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | bnj96.1 |
. . 3
| |
| 5 | 4 | dmeqi 5325 |
. 2
|
| 6 | df1o2 7572 |
. 2
| |
| 7 | 3, 5, 6 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-dm 5124 df-suc 5729 df-1o 7560 df-bnj13 30757 df-bnj15 30759 |
| This theorem is referenced by: bnj150 30946 |
| Copyright terms: Public domain | W3C validator |