| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj150 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj151 30947. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj150.1 |
|
| bnj150.2 |
|
| bnj150.3 |
|
| bnj150.4 |
|
| bnj150.5 |
|
| bnj150.6 |
|
| bnj150.7 |
|
| bnj150.8 |
|
| bnj150.9 |
|
| bnj150.10 |
|
| bnj150.11 |
|
| Ref | Expression |
|---|---|
| bnj150 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4790 |
. . . . . . . . . 10
| |
| 2 | bnj93 30933 |
. . . . . . . . . 10
| |
| 3 | funsng 5937 |
. . . . . . . . . 10
| |
| 4 | 1, 2, 3 | sylancr 695 |
. . . . . . . . 9
|
| 5 | bnj150.8 |
. . . . . . . . . 10
| |
| 6 | 5 | funeqi 5909 |
. . . . . . . . 9
|
| 7 | 4, 6 | sylibr 224 |
. . . . . . . 8
|
| 8 | 5 | bnj96 30935 |
. . . . . . . 8
|
| 9 | 7, 8 | bnj1422 30908 |
. . . . . . 7
|
| 10 | 5 | bnj97 30936 |
. . . . . . . 8
|
| 11 | bnj150.1 |
. . . . . . . . 9
| |
| 12 | bnj150.4 |
. . . . . . . . 9
| |
| 13 | bnj150.9 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13, 5 | bnj125 30942 |
. . . . . . . 8
|
| 15 | 10, 14 | sylibr 224 |
. . . . . . 7
|
| 16 | 9, 15 | jca 554 |
. . . . . 6
|
| 17 | bnj98 30937 |
. . . . . . 7
| |
| 18 | bnj150.2 |
. . . . . . . 8
| |
| 19 | bnj150.5 |
. . . . . . . 8
| |
| 20 | bnj150.10 |
. . . . . . . 8
| |
| 21 | 18, 19, 20, 5 | bnj126 30943 |
. . . . . . 7
|
| 22 | 17, 21 | mpbir 221 |
. . . . . 6
|
| 23 | 16, 22 | jctir 561 |
. . . . 5
|
| 24 | df-3an 1039 |
. . . . 5
| |
| 25 | 23, 24 | sylibr 224 |
. . . 4
|
| 26 | bnj150.11 |
. . . . 5
| |
| 27 | bnj150.3 |
. . . . . 6
| |
| 28 | bnj150.7 |
. . . . . 6
| |
| 29 | 27, 28, 12, 19 | bnj121 30940 |
. . . . 5
|
| 30 | 5, 13, 20, 26, 29 | bnj124 30941 |
. . . 4
|
| 31 | 25, 30 | mpbir 221 |
. . 3
|
| 32 | 5 | bnj95 30934 |
. . . 4
|
| 33 | sbceq1a 3446 |
. . . . 5
| |
| 34 | 33, 26 | syl6bbr 278 |
. . . 4
|
| 35 | 32, 34 | spcev 3300 |
. . 3
|
| 36 | 31, 35 | ax-mp 5 |
. 2
|
| 37 | bnj150.6 |
. . . 4
| |
| 38 | 19.37v 1910 |
. . . 4
| |
| 39 | 37, 38 | bitr4i 267 |
. . 3
|
| 40 | 39, 29 | bnj133 30793 |
. 2
|
| 41 | 36, 40 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-1o 7560 df-bnj13 30757 df-bnj15 30759 |
| This theorem is referenced by: bnj151 30947 |
| Copyright terms: Public domain | W3C validator |