Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Structured version   Visualization version   Unicode version

Theorem bnj97 30936
Description: Technical lemma for bnj150 30946. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj97  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  ( F `  (/) )  = 
pred ( x ,  A ,  R ) )
Distinct variable groups:    x, A    x, R
Allowed substitution hint:    F( x)

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 30933 . . 3  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R )  e.  _V )
2 0ex 4790 . . . . 5  |-  (/)  e.  _V
32bnj519 30804 . . . 4  |-  (  pred ( x ,  A ,  R )  e.  _V  ->  Fun  { <. (/) ,  pred ( x ,  A ,  R ) >. } )
4 bnj96.1 . . . . 5  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
54funeqi 5909 . . . 4  |-  ( Fun 
F  <->  Fun  { <. (/) ,  pred ( x ,  A ,  R ) >. } )
63, 5sylibr 224 . . 3  |-  (  pred ( x ,  A ,  R )  e.  _V  ->  Fun  F )
71, 6syl 17 . 2  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  Fun  F )
8 opex 4932 . . . 4  |-  <. (/) ,  pred ( x ,  A ,  R ) >.  e.  _V
98snid 4208 . . 3  |-  <. (/) ,  pred ( x ,  A ,  R ) >.  e.  { <.
(/) ,  pred ( x ,  A ,  R
) >. }
109, 4eleqtrri 2700 . 2  |-  <. (/) ,  pred ( x ,  A ,  R ) >.  e.  F
11 funopfv 6235 . 2  |-  ( Fun 
F  ->  ( <. (/)
,  pred ( x ,  A ,  R )
>.  e.  F  ->  ( F `  (/) )  = 
pred ( x ,  A ,  R ) ) )
127, 10, 11mpisyl 21 1  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  ( F `  (/) )  = 
pred ( x ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   Fun wfun 5882   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj150  30946
  Copyright terms: Public domain W3C validator