| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj964 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj964.2 |
|
| bnj964.3 |
|
| bnj964.5 |
|
| bnj964.8 |
|
| bnj964.12 |
|
| bnj964.13 |
|
| bnj964.96 |
|
| bnj964.165 |
|
| Ref | Expression |
|---|---|
| bnj964 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | bnj964.2 |
. . . . . . . 8
| |
| 3 | 2 | bnj1095 30852 |
. . . . . . 7
|
| 4 | bnj964.3 |
. . . . . . 7
| |
| 5 | 3, 4 | bnj1096 30853 |
. . . . . 6
|
| 6 | 5 | nf5i 2024 |
. . . . 5
|
| 7 | nfv 1843 |
. . . . 5
| |
| 8 | nfv 1843 |
. . . . 5
| |
| 9 | 6, 7, 8 | nf3an 1831 |
. . . 4
|
| 10 | 1, 9 | nfan 1828 |
. . 3
|
| 11 | bnj255 30771 |
. . . . 5
| |
| 12 | bnj645 30820 |
. . . . . . 7
| |
| 13 | simp3 1063 |
. . . . . . . 8
| |
| 14 | 13 | bnj706 30824 |
. . . . . . 7
|
| 15 | eleq2 2690 |
. . . . . . . . 9
| |
| 16 | 15 | biimpac 503 |
. . . . . . . 8
|
| 17 | elsuci 5791 |
. . . . . . . . 9
| |
| 18 | eqcom 2629 |
. . . . . . . . . 10
| |
| 19 | 18 | orbi2i 541 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylib 208 |
. . . . . . . 8
|
| 21 | 16, 20 | syl 17 |
. . . . . . 7
|
| 22 | 12, 14, 21 | syl2anc 693 |
. . . . . 6
|
| 23 | df-3an 1039 |
. . . . . . . . . . . . 13
| |
| 24 | 23 | 3anbi3i 1255 |
. . . . . . . . . . . 12
|
| 25 | bnj255 30771 |
. . . . . . . . . . . 12
| |
| 26 | 24, 25 | bitr4i 267 |
. . . . . . . . . . 11
|
| 27 | bnj345 30780 |
. . . . . . . . . . 11
| |
| 28 | bnj252 30769 |
. . . . . . . . . . 11
| |
| 29 | 26, 27, 28 | 3bitri 286 |
. . . . . . . . . 10
|
| 30 | 11 | anbi2i 730 |
. . . . . . . . . 10
|
| 31 | 29, 30 | bitr4i 267 |
. . . . . . . . 9
|
| 32 | bnj964.96 |
. . . . . . . . 9
| |
| 33 | 31, 32 | sylbir 225 |
. . . . . . . 8
|
| 34 | 33 | ex 450 |
. . . . . . 7
|
| 35 | df-3an 1039 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | 3anbi3i 1255 |
. . . . . . . . . . . 12
|
| 37 | bnj255 30771 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | bitr4i 267 |
. . . . . . . . . . 11
|
| 39 | bnj345 30780 |
. . . . . . . . . . 11
| |
| 40 | bnj252 30769 |
. . . . . . . . . . 11
| |
| 41 | 38, 39, 40 | 3bitri 286 |
. . . . . . . . . 10
|
| 42 | 11 | anbi2i 730 |
. . . . . . . . . 10
|
| 43 | 41, 42 | bitr4i 267 |
. . . . . . . . 9
|
| 44 | bnj964.165 |
. . . . . . . . 9
| |
| 45 | 43, 44 | sylbir 225 |
. . . . . . . 8
|
| 46 | 45 | ex 450 |
. . . . . . 7
|
| 47 | 34, 46 | jaoi 394 |
. . . . . 6
|
| 48 | 22, 47 | mpcom 38 |
. . . . 5
|
| 49 | 11, 48 | sylbir 225 |
. . . 4
|
| 50 | 49 | 3expia 1267 |
. . 3
|
| 51 | 10, 50 | alrimi 2082 |
. 2
|
| 52 | bnj964.5 |
. . . . 5
| |
| 53 | vex 3203 |
. . . . 5
| |
| 54 | 2, 52, 53 | bnj539 30961 |
. . . 4
|
| 55 | bnj964.8 |
. . . 4
| |
| 56 | bnj964.12 |
. . . 4
| |
| 57 | bnj964.13 |
. . . 4
| |
| 58 | 54, 55, 56, 57 | bnj965 31012 |
. . 3
|
| 59 | 58 | bnj115 30791 |
. 2
|
| 60 | 51, 59 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-suc 5729 df-iota 5851 df-fv 5896 df-bnj17 30753 |
| This theorem is referenced by: bnj910 31018 |
| Copyright terms: Public domain | W3C validator |