Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj964 Structured version   Visualization version   Unicode version

Theorem bnj964 31013
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj964.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj964.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj964.5  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj964.8  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj964.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj964.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj964.96  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
bnj964.165  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
Assertion
Ref Expression
bnj964  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
Distinct variable groups:    A, f,
i, n    D, i    i, G    R, f, i, n   
i, X    f, p, i    y, f, i, n   
i, m    ph, i
Allowed substitution hints:    ph( y, f, m, n, p)    ps( y, f, i, m, n, p)    ch( y, f, i, m, n, p)    A( y, m, p)    C( y,
f, i, m, n, p)    D( y, f, m, n, p)    R( y, m, p)    G( y, f, m, n, p)    X( y, f, m, n, p)    ps'( y, f, i, m, n, p)    ps"( y, f, i, m, n, p)

Proof of Theorem bnj964
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ i ( R  FrSe  A  /\  X  e.  A
)
2 bnj964.2 . . . . . . . 8  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
32bnj1095 30852 . . . . . . 7  |-  ( ps 
->  A. i ps )
4 bnj964.3 . . . . . . 7  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
53, 4bnj1096 30853 . . . . . 6  |-  ( ch 
->  A. i ch )
65nf5i 2024 . . . . 5  |-  F/ i ch
7 nfv 1843 . . . . 5  |-  F/ i  n  =  suc  m
8 nfv 1843 . . . . 5  |-  F/ i  p  =  suc  n
96, 7, 8nf3an 1831 . . . 4  |-  F/ i ( ch  /\  n  =  suc  m  /\  p  =  suc  n )
101, 9nfan 1828 . . 3  |-  F/ i ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )
11 bnj255 30771 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) )
12 bnj645 30820 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  suc  i  e.  p )
13 simp3 1063 . . . . . . . 8  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  p  =  suc  n )
1413bnj706 30824 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  p  =  suc  n )
15 eleq2 2690 . . . . . . . . 9  |-  ( p  =  suc  n  -> 
( suc  i  e.  p 
<->  suc  i  e.  suc  n ) )
1615biimpac 503 . . . . . . . 8  |-  ( ( suc  i  e.  p  /\  p  =  suc  n )  ->  suc  i  e.  suc  n )
17 elsuci 5791 . . . . . . . . 9  |-  ( suc  i  e.  suc  n  ->  ( suc  i  e.  n  \/  suc  i  =  n ) )
18 eqcom 2629 . . . . . . . . . 10  |-  ( suc  i  =  n  <->  n  =  suc  i )
1918orbi2i 541 . . . . . . . . 9  |-  ( ( suc  i  e.  n  \/  suc  i  =  n )  <->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2017, 19sylib 208 . . . . . . . 8  |-  ( suc  i  e.  suc  n  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2116, 20syl 17 . . . . . . 7  |-  ( ( suc  i  e.  p  /\  p  =  suc  n )  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2212, 14, 21syl2anc 693 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
23 df-3an 1039 . . . . . . . . . . . . 13  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
)  <->  ( ( i  e.  om  /\  suc  i  e.  p )  /\  suc  i  e.  n
) )
24233anbi3i 1255 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  suc  i  e.  n ) ) )
25 bnj255 30771 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  suc  i  e.  n ) ) )
2624, 25bitr4i 267 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n ) )
27 bnj345 30780 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n )  <->  ( suc  i  e.  n  /\  ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  ( i  e.  om  /\ 
suc  i  e.  p
) ) )
28 bnj252 30769 . . . . . . . . . . 11  |-  ( ( suc  i  e.  n  /\  ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
2926, 27, 283bitri 286 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
3011anbi2i 730 . . . . . . . . . 10  |-  ( ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
3129, 30bitr4i 267 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) ) )
32 bnj964.96 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
3331, 32sylbir 225 . . . . . . . 8  |-  ( ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
3433ex 450 . . . . . . 7  |-  ( suc  i  e.  n  -> 
( ( ( R 
FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
35 df-3an 1039 . . . . . . . . . . . . 13  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i )  <->  ( (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i ) )
36353anbi3i 1255 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  n  =  suc  i ) ) )
37 bnj255 30771 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  n  =  suc  i ) ) )
3836, 37bitr4i 267 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i ) )
39 bnj345 30780 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i )  <->  ( n  =  suc  i  /\  ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) )
40 bnj252 30769 . . . . . . . . . . 11  |-  ( ( n  =  suc  i  /\  ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4138, 39, 403bitri 286 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4211anbi2i 730 . . . . . . . . . 10  |-  ( ( n  =  suc  i  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4341, 42bitr4i 267 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) ) )
44 bnj964.165 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4543, 44sylbir 225 . . . . . . . 8  |-  ( ( n  =  suc  i  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4645ex 450 . . . . . . 7  |-  ( n  =  suc  i  -> 
( ( ( R 
FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
4734, 46jaoi 394 . . . . . 6  |-  ( ( suc  i  e.  n  \/  n  =  suc  i )  ->  (
( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
4822, 47mpcom 38 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
4911, 48sylbir 225 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
50493expia 1267 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( ( i  e. 
om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
5110, 50alrimi 2082 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  A. i ( ( i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) ) )
52 bnj964.5 . . . . 5  |-  ( ps'  <->  [. p  /  n ]. ps )
53 vex 3203 . . . . 5  |-  p  e. 
_V
542, 52, 53bnj539 30961 . . . 4  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  p  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
55 bnj964.8 . . . 4  |-  ( ps"  <->  [. G  / 
f ]. ps' )
56 bnj964.12 . . . 4  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
57 bnj964.13 . . . 4  |-  G  =  ( f  u.  { <. n ,  C >. } )
5854, 55, 56, 57bnj965 31012 . . 3  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  p  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
5958bnj115 30791 . 2  |-  ( ps"  <->  A. i
( ( i  e. 
om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
6051, 59sylibr 224 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   [.wsbc 3435    u. cun 3572   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-suc 5729  df-iota 5851  df-fv 5896  df-bnj17 30753
This theorem is referenced by:  bnj910  31018
  Copyright terms: Public domain W3C validator