Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brae Structured version   Visualization version   Unicode version

Theorem brae 30304
Description: 'almost everywhere' relation for a measure and a measurable set  A. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
brae  |-  ( ( M  e.  U. ran measures  /\  A  e.  dom  M )  ->  ( Aa.e. M  <->  ( M `  ( U. dom  M  \  A ) )  =  0 ) )

Proof of Theorem brae
Dummy variables  m  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( ( a  =  A  /\  m  =  M )  ->  m  =  M )
21dmeqd 5326 . . . . . . 7  |-  ( ( a  =  A  /\  m  =  M )  ->  dom  m  =  dom  M )
32unieqd 4446 . . . . . 6  |-  ( ( a  =  A  /\  m  =  M )  ->  U. dom  m  = 
U. dom  M )
4 simpl 473 . . . . . 6  |-  ( ( a  =  A  /\  m  =  M )  ->  a  =  A )
53, 4difeq12d 3729 . . . . 5  |-  ( ( a  =  A  /\  m  =  M )  ->  ( U. dom  m  \  a )  =  ( U. dom  M  \  A ) )
61, 5fveq12d 6197 . . . 4  |-  ( ( a  =  A  /\  m  =  M )  ->  ( m `  ( U. dom  m  \  a
) )  =  ( M `  ( U. dom  M  \  A ) ) )
76eqeq1d 2624 . . 3  |-  ( ( a  =  A  /\  m  =  M )  ->  ( ( m `  ( U. dom  m  \ 
a ) )  =  0  <->  ( M `  ( U. dom  M  \  A ) )  =  0 ) )
8 df-ae 30302 . . 3  |- a.e.  =  { <. a ,  m >.  |  ( m `  ( U. dom  m  \  a
) )  =  0 }
97, 8brabga 4989 . 2  |-  ( ( A  e.  dom  M  /\  M  e.  U. ran measures )  ->  ( Aa.e. M  <->  ( M `  ( U. dom  M  \  A ) )  =  0 ) )
109ancoms 469 1  |-  ( ( M  e.  U. ran measures  /\  A  e.  dom  M )  ->  ( Aa.e. M  <->  ( M `  ( U. dom  M  \  A ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115   ` cfv 5888   0cc0 9936  measurescmeas 30258  a.e.cae 30300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-dm 5124  df-iota 5851  df-fv 5896  df-ae 30302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator