Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  braew Structured version   Visualization version   Unicode version

Theorem braew 30305
Description: 'almost everywhere' relation for a measure  M and a property  ph (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypothesis
Ref Expression
braew.1  |-  U. dom  M  =  O
Assertion
Ref Expression
braew  |-  ( M  e.  U. ran measures  ->  ( { x  e.  O  |  ph }a.e. M  <->  ( M `  { x  e.  O  |  -.  ph } )  =  0 ) )
Distinct variable group:    x, O
Allowed substitution hints:    ph( x)    M( x)

Proof of Theorem braew
Dummy variables  m  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 braew.1 . . . . 5  |-  U. dom  M  =  O
2 dmexg 7097 . . . . . 6  |-  ( M  e.  U. ran measures  ->  dom  M  e.  _V )
3 uniexg 6955 . . . . . 6  |-  ( dom 
M  e.  _V  ->  U.
dom  M  e.  _V )
42, 3syl 17 . . . . 5  |-  ( M  e.  U. ran measures  ->  U. dom  M  e.  _V )
51, 4syl5eqelr 2706 . . . 4  |-  ( M  e.  U. ran measures  ->  O  e.  _V )
6 rabexg 4812 . . . 4  |-  ( O  e.  _V  ->  { x  e.  O  |  ph }  e.  _V )
75, 6syl 17 . . 3  |-  ( M  e.  U. ran measures  ->  { x  e.  O  |  ph }  e.  _V )
8 simpr 477 . . . . . 6  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  m  =  M )
98dmeqd 5326 . . . . . . . 8  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  dom  m  =  dom  M )
109unieqd 4446 . . . . . . 7  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  U. dom  m  =  U. dom  M )
11 simpl 473 . . . . . . 7  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  a  =  { x  e.  O  |  ph } )
1210, 11difeq12d 3729 . . . . . 6  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  ( U. dom  m  \  a )  =  ( U. dom  M 
\  { x  e.  O  |  ph }
) )
138, 12fveq12d 6197 . . . . 5  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  ( m `  ( U. dom  m  \  a ) )  =  ( M `  ( U. dom  M  \  {
x  e.  O  |  ph } ) ) )
1413eqeq1d 2624 . . . 4  |-  ( ( a  =  { x  e.  O  |  ph }  /\  m  =  M
)  ->  ( (
m `  ( U. dom  m  \  a ) )  =  0  <->  ( M `  ( U. dom  M  \  { x  e.  O  |  ph }
) )  =  0 ) )
15 df-ae 30302 . . . 4  |- a.e.  =  { <. a ,  m >.  |  ( m `  ( U. dom  m  \  a
) )  =  0 }
1614, 15brabga 4989 . . 3  |-  ( ( { x  e.  O  |  ph }  e.  _V  /\  M  e.  U. ran measures )  ->  ( { x  e.  O  |  ph }a.e. M 
<->  ( M `  ( U. dom  M  \  {
x  e.  O  |  ph } ) )  =  0 ) )
177, 16mpancom 703 . 2  |-  ( M  e.  U. ran measures  ->  ( { x  e.  O  |  ph }a.e. M  <->  ( M `  ( U. dom  M  \  { x  e.  O  |  ph } ) )  =  0 ) )
181difeq1i 3724 . . . . 5  |-  ( U. dom  M  \  { x  e.  O  |  ph }
)  =  ( O 
\  { x  e.  O  |  ph }
)
19 notrab 3904 . . . . 5  |-  ( O 
\  { x  e.  O  |  ph }
)  =  { x  e.  O  |  -.  ph }
2018, 19eqtri 2644 . . . 4  |-  ( U. dom  M  \  { x  e.  O  |  ph }
)  =  { x  e.  O  |  -.  ph }
2120fveq2i 6194 . . 3  |-  ( M `
 ( U. dom  M 
\  { x  e.  O  |  ph }
) )  =  ( M `  { x  e.  O  |  -.  ph } )
2221eqeq1i 2627 . 2  |-  ( ( M `  ( U. dom  M  \  { x  e.  O  |  ph }
) )  =  0  <-> 
( M `  {
x  e.  O  |  -.  ph } )  =  0 )
2317, 22syl6bb 276 1  |-  ( M  e.  U. ran measures  ->  ( { x  e.  O  |  ph }a.e. M  <->  ( M `  { x  e.  O  |  -.  ph } )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115   ` cfv 5888   0cc0 9936  measurescmeas 30258  a.e.cae 30300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896  df-ae 30302
This theorem is referenced by:  truae  30306  aean  30307
  Copyright terms: Public domain W3C validator