MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovex Structured version   Visualization version   Unicode version

Theorem brovex 7348
Description: A binary relation of the value of an operation given by the "maps to" notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Hypotheses
Ref Expression
brovex.1  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  C )
brovex.2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  Rel  ( V O E ) )
Assertion
Ref Expression
brovex  |-  ( F ( V O E ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
Distinct variable group:    x, y
Allowed substitution hints:    C( x, y)    P( x, y)    E( x, y)    F( x, y)    O( x, y)    V( x, y)

Proof of Theorem brovex
StepHypRef Expression
1 df-br 4654 . . 3  |-  ( F ( V O E ) P  <->  <. F ,  P >.  e.  ( V O E ) )
2 ne0i 3921 . . . 4  |-  ( <. F ,  P >.  e.  ( V O E )  ->  ( V O E )  =/=  (/) )
3 brovex.1 . . . . . 6  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  C )
43mpt2ndm0 6875 . . . . 5  |-  ( -.  ( V  e.  _V  /\  E  e.  _V )  ->  ( V O E )  =  (/) )
54necon1ai 2821 . . . 4  |-  ( ( V O E )  =/=  (/)  ->  ( V  e.  _V  /\  E  e. 
_V ) )
6 brovex.2 . . . . . . 7  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  Rel  ( V O E ) )
7 brrelex12 5155 . . . . . . 7  |-  ( ( Rel  ( V O E )  /\  F
( V O E ) P )  -> 
( F  e.  _V  /\  P  e.  _V )
)
86, 7sylan 488 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  F ( V O E ) P )  ->  ( F  e. 
_V  /\  P  e.  _V ) )
9 id 22 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
108, 9syldan 487 . . . . 5  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  F ( V O E ) P )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
1110ex 450 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( F ( V O E ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
122, 5, 113syl 18 . . 3  |-  ( <. F ,  P >.  e.  ( V O E )  ->  ( F
( V O E ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) ) )
131, 12sylbi 207 . 2  |-  ( F ( V O E ) P  ->  ( F ( V O E ) P  -> 
( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
1413pm2.43i 52 1  |-  ( F ( V O E ) P  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653   Rel wrel 5119  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  brovmpt2ex  7349
  Copyright terms: Public domain W3C validator