| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brprcneu | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| brprcneu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtru 4857 |
. . . . . . . . 9
| |
| 2 | exnal 1754 |
. . . . . . . . . 10
| |
| 3 | equcom 1945 |
. . . . . . . . . . 11
| |
| 4 | 3 | albii 1747 |
. . . . . . . . . 10
|
| 5 | 2, 4 | xchbinx 324 |
. . . . . . . . 9
|
| 6 | 1, 5 | mpbir 221 |
. . . . . . . 8
|
| 7 | 6 | jctr 565 |
. . . . . . 7
|
| 8 | 19.42v 1918 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 224 |
. . . . . 6
|
| 10 | opprc1 4425 |
. . . . . . . 8
| |
| 11 | 10 | eleq1d 2686 |
. . . . . . 7
|
| 12 | opprc1 4425 |
. . . . . . . . . . . 12
| |
| 13 | 12 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 14 | 11, 13 | anbi12d 747 |
. . . . . . . . . 10
|
| 15 | anidm 676 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | syl6bb 276 |
. . . . . . . . 9
|
| 17 | 16 | anbi1d 741 |
. . . . . . . 8
|
| 18 | 17 | exbidv 1850 |
. . . . . . 7
|
| 19 | 11, 18 | imbi12d 334 |
. . . . . 6
|
| 20 | 9, 19 | mpbiri 248 |
. . . . 5
|
| 21 | df-br 4654 |
. . . . 5
| |
| 22 | df-br 4654 |
. . . . . . . 8
| |
| 23 | 21, 22 | anbi12i 733 |
. . . . . . 7
|
| 24 | 23 | anbi1i 731 |
. . . . . 6
|
| 25 | 24 | exbii 1774 |
. . . . 5
|
| 26 | 20, 21, 25 | 3imtr4g 285 |
. . . 4
|
| 27 | 26 | eximdv 1846 |
. . 3
|
| 28 | exnal 1754 |
. . . 4
| |
| 29 | exanali 1786 |
. . . . 5
| |
| 30 | 29 | exbii 1774 |
. . . 4
|
| 31 | breq2 4657 |
. . . . . 6
| |
| 32 | 31 | mo4 2517 |
. . . . 5
|
| 33 | 32 | notbii 310 |
. . . 4
|
| 34 | 28, 30, 33 | 3bitr4ri 293 |
. . 3
|
| 35 | 27, 34 | syl6ibr 242 |
. 2
|
| 36 | eu5 2496 |
. . . 4
| |
| 37 | 36 | notbii 310 |
. . 3
|
| 38 | imnan 438 |
. . 3
| |
| 39 | 37, 38 | bitr4i 267 |
. 2
|
| 40 | 35, 39 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
| This theorem is referenced by: fvprc 6185 |
| Copyright terms: Public domain | W3C validator |