Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brub Structured version   Visualization version   Unicode version

Theorem brub 32061
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.)
Hypotheses
Ref Expression
brub.1  |-  S  e. 
_V
brub.2  |-  A  e. 
_V
Assertion
Ref Expression
brub  |-  ( SUB R A  <->  A. x  e.  S  x R A )
Distinct variable groups:    x, A    x, R    x, S

Proof of Theorem brub
StepHypRef Expression
1 brub.1 . . . . 5  |-  S  e. 
_V
2 brub.2 . . . . 5  |-  A  e. 
_V
3 brxp 5147 . . . . 5  |-  ( S ( _V  X.  _V ) A  <->  ( S  e. 
_V  /\  A  e.  _V ) )
41, 2, 3mpbir2an 955 . . . 4  |-  S ( _V  X.  _V ) A
5 brdif 4705 . . . 4  |-  ( S ( ( _V  X.  _V )  \  (
( _V  \  R
)  o.  `'  _E  ) ) A  <->  ( S
( _V  X.  _V ) A  /\  -.  S
( ( _V  \  R )  o.  `'  _E  ) A ) )
64, 5mpbiran 953 . . 3  |-  ( S ( ( _V  X.  _V )  \  (
( _V  \  R
)  o.  `'  _E  ) ) A  <->  -.  S
( ( _V  \  R )  o.  `'  _E  ) A )
71, 2coepr 31642 . . 3  |-  ( S ( ( _V  \  R )  o.  `'  _E  ) A  <->  E. x  e.  S  x ( _V  \  R ) A )
86, 7xchbinx 324 . 2  |-  ( S ( ( _V  X.  _V )  \  (
( _V  \  R
)  o.  `'  _E  ) ) A  <->  -.  E. x  e.  S  x ( _V  \  R ) A )
9 df-ub 31983 . . 3  |- UB R  =  ( ( _V  X.  _V )  \  (
( _V  \  R
)  o.  `'  _E  ) )
109breqi 4659 . 2  |-  ( SUB R A  <->  S (
( _V  X.  _V )  \  ( ( _V 
\  R )  o.  `'  _E  ) ) A )
11 brv 4941 . . . . . 6  |-  x _V A
12 brdif 4705 . . . . . 6  |-  ( x ( _V  \  R
) A  <->  ( x _V A  /\  -.  x R A ) )
1311, 12mpbiran 953 . . . . 5  |-  ( x ( _V  \  R
) A  <->  -.  x R A )
1413rexbii 3041 . . . 4  |-  ( E. x  e.  S  x ( _V  \  R
) A  <->  E. x  e.  S  -.  x R A )
15 rexnal 2995 . . . 4  |-  ( E. x  e.  S  -.  x R A  <->  -.  A. x  e.  S  x R A )
1614, 15bitri 264 . . 3  |-  ( E. x  e.  S  x ( _V  \  R
) A  <->  -.  A. x  e.  S  x R A )
1716con2bii 347 . 2  |-  ( A. x  e.  S  x R A  <->  -.  E. x  e.  S  x ( _V  \  R ) A )
188, 10, 173bitr4i 292 1  |-  ( SUB R A  <->  A. x  e.  S  x R A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571   class class class wbr 4653    _E cep 5028    X. cxp 5112   `'ccnv 5113    o. ccom 5118  UBcub 31959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-xp 5120  df-cnv 5122  df-co 5123  df-ub 31983
This theorem is referenced by:  brlb  32062
  Copyright terms: Public domain W3C validator