| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catcval | Structured version Visualization version Unicode version | ||
| Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| catcval.c |
|
| catcval.u |
|
| catcval.b |
|
| catcval.h |
|
| catcval.o |
|
| Ref | Expression |
|---|---|
| catcval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcval.c |
. 2
| |
| 2 | df-catc 16745 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | vex 3203 |
. . . . . 6
| |
| 5 | 4 | inex1 4799 |
. . . . 5
|
| 6 | 5 | a1i 11 |
. . . 4
|
| 7 | simpr 477 |
. . . . . 6
| |
| 8 | 7 | ineq1d 3813 |
. . . . 5
|
| 9 | catcval.b |
. . . . . 6
| |
| 10 | 9 | adantr 481 |
. . . . 5
|
| 11 | 8, 10 | eqtr4d 2659 |
. . . 4
|
| 12 | simpr 477 |
. . . . . 6
| |
| 13 | 12 | opeq2d 4409 |
. . . . 5
|
| 14 | eqidd 2623 |
. . . . . . . 8
| |
| 15 | 12, 12, 14 | mpt2eq123dv 6717 |
. . . . . . 7
|
| 16 | catcval.h |
. . . . . . . 8
| |
| 17 | 16 | ad2antrr 762 |
. . . . . . 7
|
| 18 | 15, 17 | eqtr4d 2659 |
. . . . . 6
|
| 19 | 18 | opeq2d 4409 |
. . . . 5
|
| 20 | 12 | sqxpeqd 5141 |
. . . . . . . 8
|
| 21 | eqidd 2623 |
. . . . . . . 8
| |
| 22 | 20, 12, 21 | mpt2eq123dv 6717 |
. . . . . . 7
|
| 23 | catcval.o |
. . . . . . . 8
| |
| 24 | 23 | ad2antrr 762 |
. . . . . . 7
|
| 25 | 22, 24 | eqtr4d 2659 |
. . . . . 6
|
| 26 | 25 | opeq2d 4409 |
. . . . 5
|
| 27 | 13, 19, 26 | tpeq123d 4283 |
. . . 4
|
| 28 | 6, 11, 27 | csbied2 3561 |
. . 3
|
| 29 | catcval.u |
. . . 4
| |
| 30 | elex 3212 |
. . . 4
| |
| 31 | 29, 30 | syl 17 |
. . 3
|
| 32 | tpex 6957 |
. . . 4
| |
| 33 | 32 | a1i 11 |
. . 3
|
| 34 | 3, 28, 31, 33 | fvmptd 6288 |
. 2
|
| 35 | 1, 34 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-catc 16745 |
| This theorem is referenced by: catcbas 16747 catchomfval 16748 catccofval 16750 |
| Copyright terms: Public domain | W3C validator |