| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catidex | Structured version Visualization version Unicode version | ||
| Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| catidex.b |
|
| catidex.h |
|
| catidex.o |
|
| catidex.c |
|
| catidex.x |
|
| Ref | Expression |
|---|---|
| catidex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidex.x |
. 2
| |
| 2 | catidex.c |
. . 3
| |
| 3 | catidex.b |
. . . . 5
| |
| 4 | catidex.h |
. . . . 5
| |
| 5 | catidex.o |
. . . . 5
| |
| 6 | 3, 4, 5 | iscat 16333 |
. . . 4
|
| 7 | 6 | ibi 256 |
. . 3
|
| 8 | simpl 473 |
. . . 4
| |
| 9 | 8 | ralimi 2952 |
. . 3
|
| 10 | 2, 7, 9 | 3syl 18 |
. 2
|
| 11 | id 22 |
. . . . 5
| |
| 12 | 11, 11 | oveq12d 6668 |
. . . 4
|
| 13 | oveq2 6658 |
. . . . . . 7
| |
| 14 | opeq2 4403 |
. . . . . . . . . 10
| |
| 15 | 14, 11 | oveq12d 6668 |
. . . . . . . . 9
|
| 16 | 15 | oveqd 6667 |
. . . . . . . 8
|
| 17 | 16 | eqeq1d 2624 |
. . . . . . 7
|
| 18 | 13, 17 | raleqbidv 3152 |
. . . . . 6
|
| 19 | oveq1 6657 |
. . . . . . 7
| |
| 20 | 11, 11 | opeq12d 4410 |
. . . . . . . . . 10
|
| 21 | 20 | oveq1d 6665 |
. . . . . . . . 9
|
| 22 | 21 | oveqd 6667 |
. . . . . . . 8
|
| 23 | 22 | eqeq1d 2624 |
. . . . . . 7
|
| 24 | 19, 23 | raleqbidv 3152 |
. . . . . 6
|
| 25 | 18, 24 | anbi12d 747 |
. . . . 5
|
| 26 | 25 | ralbidv 2986 |
. . . 4
|
| 27 | 12, 26 | rexeqbidv 3153 |
. . 3
|
| 28 | 27 | rspcv 3305 |
. 2
|
| 29 | 1, 10, 28 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-cat 16329 |
| This theorem is referenced by: catideu 16336 |
| Copyright terms: Public domain | W3C validator |