Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem27 Structured version   Visualization version   Unicode version

Theorem poimirlem27 33436
Description: Lemma for poimir 33442 showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem28.1  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  C )
poimirlem28.2  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
poimirlem28.3  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  B  <  n
)
poimirlem28.4  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  K ) )  ->  B  =/=  ( n  - 
1 ) )
Assertion
Ref Expression
poimirlem27  |-  ( ph  ->  2  ||  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) ) )
Distinct variable groups:    f, i,
j, n, p, s, t    ph, j, n    j, N, n    ph, i, p, s, t    B, f, i, j, n, s, t    f, K, i, j, n, p, s, t    f, N, i, p, s, t    C, i, n, p, t
Allowed substitution hints:    ph( f)    B( p)    C( f, j, s)

Proof of Theorem poimirlem27
Dummy variables  m  q  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 12771 . . . . . 6  |-  ( 0 ... K )  e. 
Fin
2 fzfi 12771 . . . . . 6  |-  ( 1 ... N )  e. 
Fin
3 mapfi 8262 . . . . . 6  |-  ( ( ( 0 ... K
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( 0 ... K )  ^m  (
1 ... N ) )  e.  Fin )
41, 2, 3mp2an 708 . . . . 5  |-  ( ( 0 ... K )  ^m  ( 1 ... N ) )  e. 
Fin
5 fzfi 12771 . . . . 5  |-  ( 0 ... ( N  - 
1 ) )  e. 
Fin
6 mapfi 8262 . . . . 5  |-  ( ( ( ( 0 ... K )  ^m  (
1 ... N ) )  e.  Fin  /\  (
0 ... ( N  - 
1 ) )  e. 
Fin )  ->  (
( ( 0 ... K )  ^m  (
1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) )  e. 
Fin )
74, 5, 6mp2an 708 . . . 4  |-  ( ( ( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) )  e. 
Fin
87a1i 11 . . 3  |-  ( ph  ->  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) )  e.  Fin )
9 2z 11409 . . . 4  |-  2  e.  ZZ
109a1i 11 . . 3  |-  ( ph  ->  2  e.  ZZ )
11 fzofi 12773 . . . . . . . 8  |-  ( 0..^ K )  e.  Fin
12 mapfi 8262 . . . . . . . 8  |-  ( ( ( 0..^ K )  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( 0..^ K )  ^m  ( 1 ... N ) )  e. 
Fin )
1311, 2, 12mp2an 708 . . . . . . 7  |-  ( ( 0..^ K )  ^m  ( 1 ... N
) )  e.  Fin
14 mapfi 8262 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( 1 ... N )  ^m  (
1 ... N ) )  e.  Fin )
152, 2, 14mp2an 708 . . . . . . . 8  |-  ( ( 1 ... N )  ^m  ( 1 ... N ) )  e. 
Fin
16 f1of 6137 . . . . . . . . . 10  |-  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  ->  f :
( 1 ... N
) --> ( 1 ... N ) )
1716ss2abi 3674 . . . . . . . . 9  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  C_  { f  |  f : ( 1 ... N ) --> ( 1 ... N
) }
18 ovex 6678 . . . . . . . . . 10  |-  ( 1 ... N )  e. 
_V
1918, 18mapval 7869 . . . . . . . . 9  |-  ( ( 1 ... N )  ^m  ( 1 ... N ) )  =  { f  |  f : ( 1 ... N ) --> ( 1 ... N ) }
2017, 19sseqtr4i 3638 . . . . . . . 8  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  C_  ( (
1 ... N )  ^m  ( 1 ... N
) )
21 ssfi 8180 . . . . . . . 8  |-  ( ( ( ( 1 ... N )  ^m  (
1 ... N ) )  e.  Fin  /\  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  C_  (
( 1 ... N
)  ^m  ( 1 ... N ) ) )  ->  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  Fin )
2215, 20, 21mp2an 708 . . . . . . 7  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  Fin
23 xpfi 8231 . . . . . . 7  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  e.  Fin  /\  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  e.  Fin )  ->  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  e. 
Fin )
2413, 22, 23mp2an 708 . . . . . 6  |-  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  e. 
Fin
25 fzfi 12771 . . . . . 6  |-  ( 0 ... N )  e. 
Fin
26 xpfi 8231 . . . . . 6  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  e.  Fin  /\  ( 0 ... N
)  e.  Fin )  ->  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  e.  Fin )
2724, 25, 26mp2an 708 . . . . 5  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin
28 rabfi 8185 . . . . 5  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  e.  Fin )
2927, 28ax-mp 5 . . . 4  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  e.  Fin
30 hashcl 13147 . . . . 5  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  e.  Fin  ->  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  e.  NN0 )
3130nn0zd 11480 . . . 4  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  e.  Fin  ->  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  e.  ZZ )
3229, 31mp1i 13 . . 3  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  e.  ZZ )
33 dfrex2 2996 . . . . 5  |-  ( E. t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  <->  -.  A. t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  -.  (
( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) ) )
34 nfv 1843 . . . . . 6  |-  F/ t ( ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )
35 nfcv 2764 . . . . . . 7  |-  F/_ t
2
36 nfcv 2764 . . . . . . 7  |-  F/_ t  ||
37 nfcv 2764 . . . . . . . 8  |-  F/_ t #
38 nfrab1 3122 . . . . . . . 8  |-  F/_ t { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }
3937, 38nffv 6198 . . . . . . 7  |-  F/_ t
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )
4035, 36, 39nfbr 4699 . . . . . 6  |-  F/ t 2  ||  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )
41 neq0 3930 . . . . . . . . . . . 12  |-  ( -. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  =  (/)  <->  E. s  s  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )
42 iddvds 14995 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  ZZ  ->  2  ||  2 )
439, 42ax-mp 5 . . . . . . . . . . . . . . . 16  |-  2  ||  2
44 vex 3203 . . . . . . . . . . . . . . . . . . 19  |-  s  e. 
_V
45 hashsng 13159 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  _V  ->  ( # `
 { s } )  =  1 )
4644, 45ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( # `  { s } )  =  1
4746oveq2i 6661 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  ( # `  {
s } ) )  =  ( 1  +  1 )
48 df-2 11079 . . . . . . . . . . . . . . . . 17  |-  2  =  ( 1  +  1 )
4947, 48eqtr4i 2647 . . . . . . . . . . . . . . . 16  |-  ( 1  +  ( # `  {
s } ) )  =  2
5043, 49breqtrri 4680 . . . . . . . . . . . . . . 15  |-  2  ||  ( 1  +  (
# `  { s } ) )
51 rabfi 8185 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  e.  Fin )
52 diffi 8192 . . . . . . . . . . . . . . . . . . . 20  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  e.  Fin  ->  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  e.  Fin )
5327, 51, 52mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  e.  Fin
54 snfi 8038 . . . . . . . . . . . . . . . . . . 19  |-  { s }  e.  Fin
55 incom 3805 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  i^i  { s } )  =  ( { s }  i^i  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )
56 disjdif 4040 . . . . . . . . . . . . . . . . . . . 20  |-  ( { s }  i^i  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  =  (/)
5755, 56eqtri 2644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  i^i  { s } )  =  (/)
58 hashun 13171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  e.  Fin  /\  { s }  e.  Fin  /\  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  i^i  { s } )  =  (/) )  ->  ( # `  (
( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  u.  { s } ) )  =  ( ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  +  (
# `  { s } ) ) )
5953, 54, 57, 58mp3an 1424 . . . . . . . . . . . . . . . . . 18  |-  ( # `  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  u.  { s } ) )  =  ( ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  +  (
# `  { s } ) )
60 difsnid 4341 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  u.  { s } )  =  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )
6160fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  ( # `  (
( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  u.  { s } ) )  =  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) )
6259, 61syl5eqr 2670 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  ( ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  +  (
# `  { s } ) )  =  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) )
6362adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  ( ( # `
 ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  +  (
# `  { s } ) )  =  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) )
64 poimir.0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  NN )
6564ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  N  e.  NN )
66 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  u  ->  ( 2nd `  t )  =  ( 2nd `  u
) )
6766breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  u  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  u ) ) )
6867ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  u  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  u
) ,  y ,  ( y  +  1 ) ) )
6968csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  u  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
70 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  u  ->  ( 1st `  t )  =  ( 1st `  u
) )
7170fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  u  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  u ) ) )
7270fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( t  =  u  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  u ) ) )
7372imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  =  u  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  u ) )
" ( 1 ... j ) ) )
7473xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  u  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  u ) ) "
( 1 ... j
) )  X.  {
1 } ) )
7572imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  =  u  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) ) )
7675xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  u  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  u ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
7774, 76uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  u  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  u ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
7871, 77oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  u  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
7978csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  u  ->  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8069, 79eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  u  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8180mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  u  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  u
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
82 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  w  ->  (
y  <  ( 2nd `  u )  <->  w  <  ( 2nd `  u ) ) )
83 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  w  ->  y  =  w )
84 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  w  ->  (
y  +  1 )  =  ( w  + 
1 ) )
8582, 83, 84ifbieq12d 4113 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  =  w  ->  if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  =  if ( w  <  ( 2nd `  u
) ,  w ,  ( w  +  1 ) ) )
8685csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  w  ->  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( w  <  ( 2nd `  u ) ,  w ,  ( w  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
87 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  i  ->  (
1 ... j )  =  ( 1 ... i
) )
8887imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  =  i  ->  (
( 2nd `  ( 1st `  u ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  u ) )
" ( 1 ... i ) ) )
8988xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  =  i  ->  (
( ( 2nd `  ( 1st `  u ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  u ) ) "
( 1 ... i
) )  X.  {
1 } ) )
90 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  =  i  ->  (
j  +  1 )  =  ( i  +  1 ) )
9190oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  i  ->  (
( j  +  1 ) ... N )  =  ( ( i  +  1 ) ... N ) )
9291imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  =  i  ->  (
( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) ) )
9392xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  =  i  ->  (
( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  u ) ) "
( ( i  +  1 ) ... N
) )  X.  {
0 } ) )
9489, 93uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  =  i  ->  (
( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  u ) )
" ( 1 ... i ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) ) "
( ( i  +  1 ) ... N
) )  X.  {
0 } ) ) )
9594oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  =  i  ->  (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... i ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
9695cbvcsbv 3539 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  [_ if ( w  <  ( 2nd `  u ) ,  w ,  ( w  + 
1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  u
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  [_ if ( w  <  ( 2nd `  u ) ,  w ,  ( w  + 
1 ) )  / 
i ]_ ( ( 1st `  ( 1st `  u
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u ) )
" ( 1 ... i ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) ) "
( ( i  +  1 ) ... N
) )  X.  {
0 } ) ) )
9786, 96syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  w  ->  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( w  <  ( 2nd `  u ) ,  w ,  ( w  +  1 ) )  /  i ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... i ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
9897cbvmptv 4750 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  u ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( w  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( w  <  ( 2nd `  u
) ,  w ,  ( w  +  1 ) )  /  i ]_ ( ( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... i ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
9981, 98syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  u  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( w  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( w  <  ( 2nd `  u
) ,  w ,  ( w  +  1 ) )  /  i ]_ ( ( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... i ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
10099eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  u  ->  (
x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  x  =  ( w  e.  (
0 ... ( N  - 
1 ) )  |->  [_ if ( w  <  ( 2nd `  u ) ,  w ,  ( w  +  1 ) )  /  i ]_ (
( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... i ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
101100cbvrabv 3199 . . . . . . . . . . . . . . . . . . 19  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  =  { u  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( w  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( w  <  ( 2nd `  u
) ,  w ,  ( w  +  1 ) )  /  i ]_ ( ( 1st `  ( 1st `  u ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  u
) ) " (
1 ... i ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  u ) )
" ( ( i  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
102 elmapi 7879 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) )  ->  x : ( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N ) ) )
103102ad3antlr 767 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  x :
( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N
) ) )
104 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )
105 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
)  ->  E. p  e.  ran  x ( p `
 n )  =/=  0 )
106105ralimi 2952 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
)  ->  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0 )
107106ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0 )
108 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
p `  n )  =  ( p `  m ) )
109108neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
( p `  n
)  =/=  0  <->  (
p `  m )  =/=  0 ) )
110109rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  ( E. p  e.  ran  x ( p `  n )  =/=  0  <->  E. p  e.  ran  x
( p `  m
)  =/=  0 ) )
111 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  =  q  ->  (
p `  m )  =  ( q `  m ) )
112111neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  q  ->  (
( p `  m
)  =/=  0  <->  (
q `  m )  =/=  0 ) )
113112cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E. p  e.  ran  x
( p `  m
)  =/=  0  <->  E. q  e.  ran  x ( q `  m )  =/=  0 )
114110, 113syl6bb 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  m  ->  ( E. p  e.  ran  x ( p `  n )  =/=  0  <->  E. q  e.  ran  x
( q `  m
)  =/=  0 ) )
115114rspccva 3308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. n  e.  ( 1 ... N ) E. p  e.  ran  x ( p `  n )  =/=  0  /\  m  e.  (
1 ... N ) )  ->  E. q  e.  ran  x ( q `  m )  =/=  0
)
116107, 115sylan 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  /\  m  e.  ( 1 ... N
) )  ->  E. q  e.  ran  x ( q `
 m )  =/=  0 )
117 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
)  ->  E. p  e.  ran  x ( p `
 n )  =/= 
K )
118117ralimi 2952 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
)  ->  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/= 
K )
119118ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/= 
K )
120108neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
( p `  n
)  =/=  K  <->  ( p `  m )  =/=  K
) )
121120rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  ( E. p  e.  ran  x ( p `  n )  =/=  K  <->  E. p  e.  ran  x
( p `  m
)  =/=  K ) )
122111neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  q  ->  (
( p `  m
)  =/=  K  <->  ( q `  m )  =/=  K
) )
123122cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E. p  e.  ran  x
( p `  m
)  =/=  K  <->  E. q  e.  ran  x ( q `
 m )  =/= 
K )
124121, 123syl6bb 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  m  ->  ( E. p  e.  ran  x ( p `  n )  =/=  K  <->  E. q  e.  ran  x
( q `  m
)  =/=  K ) )
125124rspccva 3308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. n  e.  ( 1 ... N ) E. p  e.  ran  x ( p `  n )  =/=  K  /\  m  e.  (
1 ... N ) )  ->  E. q  e.  ran  x ( q `  m )  =/=  K
)
126119, 125sylan 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  ( ( ( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  /\  m  e.  ( 1 ... N
) )  ->  E. q  e.  ran  x ( q `
 m )  =/= 
K )
12765, 101, 103, 104, 116, 126poimirlem22 33431 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  E! z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } z  =/=  s )
128 eldifsn 4317 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  <->  ( z  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  /\  z  =/=  s
) )
129128eubii 2492 . . . . . . . . . . . . . . . . . . 19  |-  ( E! z  z  e.  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  <->  E! z ( z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  /\  z  =/=  s
) )
13053elexi 3213 . . . . . . . . . . . . . . . . . . . 20  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  e.  _V
131 euhash1 13208 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } )  e.  _V  ->  ( ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  =  1  <-> 
E! z  z  e.  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) ) )
132130, 131ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  ( {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  =  1  <-> 
E! z  z  e.  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )
133 df-reu 2919 . . . . . . . . . . . . . . . . . . 19  |-  ( E! z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } z  =/=  s  <->  E! z
( z  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  /\  z  =/=  s
) )
134129, 132, 1333bitr4ri 293 . . . . . . . . . . . . . . . . . 18  |-  ( E! z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } z  =/=  s  <->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  =  1 )
135127, 134sylib 208 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  =  1 )
136135oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  ( ( # `
 ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } 
\  { s } ) )  +  (
# `  { s } ) )  =  ( 1  +  (
# `  { s } ) ) )
13763, 136eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  =  ( 1  +  ( # `  {
s } ) ) )
13850, 137syl5breqr 4691 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  /\  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  ->  2  ||  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) )
139138ex 450 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
( s  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  2  ||  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) ) )
140139exlimdv 1861 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
( E. s  s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  2  ||  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) ) )
14141, 140syl5bi 232 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
( -.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  =  (/)  ->  2  ||  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) ) )
142 dvds0 14997 . . . . . . . . . . . . . 14  |-  ( 2  e.  ZZ  ->  2  ||  0 )
1439, 142ax-mp 5 . . . . . . . . . . . . 13  |-  2  ||  0
144 hash0 13158 . . . . . . . . . . . . 13  |-  ( # `  (/) )  =  0
145143, 144breqtrri 4680 . . . . . . . . . . . 12  |-  2  ||  ( # `  (/) )
146 fveq2 6191 . . . . . . . . . . . 12  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  =  (/)  ->  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  =  ( # `  (/) ) )
147145, 146syl5breqr 4691 . . . . . . . . . . 11  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  =  (/)  ->  2  ||  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) )
148141, 147pm2.61d2 172 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) )
149148ex 450 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
)  ->  2  ||  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) ) )
150149adantld 483 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( (
( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } ) ) )
151 iba 524 . . . . . . . . . . 11  |-  ( ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) ) )
152151rabbidv 3189 . . . . . . . . . 10  |-  ( ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  =  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )
153152fveq2d 6195 . . . . . . . . 9  |-  ( ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  =  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) )
154153breq2d 4665 . . . . . . . 8  |-  ( ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
( 2  ||  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )  <->  2  ||  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) ) )
155150, 154mpbidi 231 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( (
( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N
) ( E. p  e.  ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )  -> 
2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) ) )
156155a1d 25 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) ) ) )
15734, 40, 156rexlimd 3026 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( E. t  e.  ( (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) ) )
15833, 157syl5bir 233 . . . 4  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( -.  A. t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  -.  ( ( 0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) ) )
159 simpr 477 . . . . . . . . 9  |-  ( ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) )  -> 
( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) )
160159con3i 150 . . . . . . . 8  |-  ( -.  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  -.  ( x  =  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) )
161160ralimi 2952 . . . . . . 7  |-  ( A. t  e.  ( (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  -.  ( ( 0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  A. t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  -.  (
x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) )
162 rabeq0 3957 . . . . . . 7  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  =  (/)  <->  A. t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  -.  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) )
163161, 162sylibr 224 . . . . . 6  |-  ( A. t  e.  ( (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  -.  ( ( 0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  =  (/) )
164163fveq2d 6195 . . . . 5  |-  ( A. t  e.  ( (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  -.  ( ( 0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  =  ( # `  (/) ) )
165145, 164syl5breqr 4691 . . . 4  |-  ( A. t  e.  ( (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  -.  ( ( 0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) )  ->  2  ||  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) )
166158, 165pm2.61d2 172 . . 3  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  2  ||  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) )
1678, 10, 32, 166fsumdvds 15030 . 2  |-  ( ph  ->  2  ||  sum_ x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) )
168 rabfi 8185 . . . . 5  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  e.  Fin )
16927, 168ax-mp 5 . . . 4  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  e.  Fin
170 simp1 1061 . . . . . . 7  |-  ( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N )  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C
)
171 sneq 4187 . . . . . . . . . . . . 13  |-  ( ( 2nd `  t )  =  N  ->  { ( 2nd `  t ) }  =  { N } )
172171difeq2d 3728 . . . . . . . . . . . 12  |-  ( ( 2nd `  t )  =  N  ->  (
( 0 ... N
)  \  { ( 2nd `  t ) } )  =  ( ( 0 ... N ) 
\  { N }
) )
173 difun2 4048 . . . . . . . . . . . . 13  |-  ( ( ( 0 ... ( N  -  1 ) )  u.  { N } )  \  { N } )  =  ( ( 0 ... ( N  -  1 ) )  \  { N } )
17464nnnn0d 11351 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN0 )
175 nn0uz 11722 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
176174, 175syl6eleq 2711 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
177 fzm1 12420 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( n  e.  ( 0 ... N
)  <->  ( n  e.  ( 0 ... ( N  -  1 ) )  \/  n  =  N ) ) )
178176, 177syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( n  e.  ( 0 ... N )  <-> 
( n  e.  ( 0 ... ( N  -  1 ) )  \/  n  =  N ) ) )
179 elun 3753 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( 0 ... ( N  - 
1 ) )  u. 
{ N } )  <-> 
( n  e.  ( 0 ... ( N  -  1 ) )  \/  n  e.  { N } ) )
180 velsn 4193 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  { N }  <->  n  =  N )
181180orbi2i 541 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( 0 ... ( N  - 
1 ) )  \/  n  e.  { N } )  <->  ( n  e.  ( 0 ... ( N  -  1 ) )  \/  n  =  N ) )
182179, 181bitri 264 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ( 0 ... ( N  - 
1 ) )  u. 
{ N } )  <-> 
( n  e.  ( 0 ... ( N  -  1 ) )  \/  n  =  N ) )
183178, 182syl6bbr 278 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( n  e.  ( 0 ... N )  <-> 
n  e.  ( ( 0 ... ( N  -  1 ) )  u.  { N }
) ) )
184183eqrdv 2620 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 ... ( N  -  1 ) )  u.  { N }
) )
185184difeq1d 3727 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 0 ... N )  \  { N } )  =  ( ( ( 0 ... ( N  -  1 ) )  u.  { N } )  \  { N } ) )
18664nnzd 11481 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ZZ )
187 uzid 11702 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
188 uznfz 12423 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  N
)  ->  -.  N  e.  ( 0 ... ( N  -  1 ) ) )
189186, 187, 1883syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  N  e.  ( 0 ... ( N  -  1 ) ) )
190 disjsn 4246 . . . . . . . . . . . . . . 15  |-  ( ( ( 0 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( 0 ... ( N  - 
1 ) ) )
191 disj3 4021 . . . . . . . . . . . . . . 15  |-  ( ( ( 0 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  (
0 ... ( N  - 
1 ) )  =  ( ( 0 ... ( N  -  1 ) )  \  { N } ) )
192190, 191bitr3i 266 . . . . . . . . . . . . . 14  |-  ( -.  N  e.  ( 0 ... ( N  - 
1 ) )  <->  ( 0 ... ( N  - 
1 ) )  =  ( ( 0 ... ( N  -  1 ) )  \  { N } ) )
193189, 192sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  =  ( ( 0 ... ( N  -  1 ) ) 
\  { N }
) )
194173, 185, 1933eqtr4a 2682 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 0 ... N )  \  { N } )  =  ( 0 ... ( N  -  1 ) ) )
195172, 194sylan9eqr 2678 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2nd `  t )  =  N )  ->  ( (
0 ... N )  \  { ( 2nd `  t
) } )  =  ( 0 ... ( N  -  1 ) ) )
196195rexeqdv 3145 . . . . . . . . . 10  |-  ( (
ph  /\  ( 2nd `  t )  =  N )  ->  ( E. j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
197196biimprd 238 . . . . . . . . 9  |-  ( (
ph  /\  ( 2nd `  t )  =  N )  ->  ( E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
198197ralimdv 2963 . . . . . . . 8  |-  ( (
ph  /\  ( 2nd `  t )  =  N )  ->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
199198expimpd 629 . . . . . . 7  |-  ( ph  ->  ( ( ( 2nd `  t )  =  N  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C
)  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
200170, 199sylan2i 687 . . . . . 6  |-  ( ph  ->  ( ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
201200adantr 481 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
202201ss2rabdv 3683 . . . 4  |-  ( ph  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )
203 hashssdif 13200 . . . 4  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  e.  Fin  /\ 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )  -> 
( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) )  =  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) ) )
204169, 202, 203sylancr 695 . . 3  |-  ( ph  ->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) )  =  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) ) )
20564adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  ->  N  e.  NN )
206 poimirlem28.1 . . . . . . . . . 10  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  C )
207 poimirlem28.2 . . . . . . . . . . 11  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
208207adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  /\  p : ( 1 ... N ) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
209 xp1st 7198 . . . . . . . . . . . 12  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
210 xp1st 7198 . . . . . . . . . . . 12  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  t ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
211 elmapi 7879 . . . . . . . . . . . 12  |-  ( ( 1st `  ( 1st `  t ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  t ) ) : ( 1 ... N ) --> ( 0..^ K ) )
212209, 210, 2113syl 18 . . . . . . . . . . 11  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  ( 1st `  t
) ) : ( 1 ... N ) --> ( 0..^ K ) )
213212adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( 1st `  ( 1st `  t ) ) : ( 1 ... N ) --> ( 0..^ K ) )
214 xp2nd 7199 . . . . . . . . . . . . 13  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  t ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
215 fvex 6201 . . . . . . . . . . . . . 14  |-  ( 2nd `  ( 1st `  t
) )  e.  _V
216 f1oeq1 6127 . . . . . . . . . . . . . 14  |-  ( f  =  ( 2nd `  ( 1st `  t ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
217215, 216elab 3350 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  t ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  t
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
218214, 217sylib 208 . . . . . . . . . . . 12  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
219209, 218syl 17 . . . . . . . . . . 11  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  ( 1st `  t
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
220219adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( 2nd `  ( 1st `  t ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
221 xp2nd 7199 . . . . . . . . . . 11  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  t )  e.  ( 0 ... N
) )
222221adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( 2nd `  t
)  e.  ( 0 ... N ) )
223205, 206, 208, 213, 220, 222poimirlem24 33433 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( E. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ <. ( 1st `  ( 1st `  t
) ) ,  ( 2nd `  ( 1st `  t ) ) >.  /  s ]_ C  /\  -.  ( ( 2nd `  t )  =  N  /\  ( ( ( 1st `  ( 1st `  t ) ) `  N )  =  0  /\  ( ( 2nd `  ( 1st `  t
) ) `  N
)  =  N ) ) ) ) )
224209adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( 1st `  t
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
225 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  t
)  =  <. ( 1st `  ( 1st `  t
) ) ,  ( 2nd `  ( 1st `  t ) ) >.
)
226225csbeq1d 3540 . . . . . . . . . . . . . 14  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  ->  [_ ( 1st `  t
)  /  s ]_ C  =  [_ <. ( 1st `  ( 1st `  t
) ) ,  ( 2nd `  ( 1st `  t ) ) >.  /  s ]_ C
)
227226eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( i  =  [_ ( 1st `  t )  /  s ]_ C  <->  i  =  [_ <. ( 1st `  ( 1st `  t
) ) ,  ( 2nd `  ( 1st `  t ) ) >.  /  s ]_ C
) )
228227rexbidv 3052 . . . . . . . . . . . 12  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ <. ( 1st `  ( 1st `  t ) ) ,  ( 2nd `  ( 1st `  t ) )
>.  /  s ]_ C
) )
229228ralbidv 2986 . . . . . . . . . . 11  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ <. ( 1st `  ( 1st `  t ) ) ,  ( 2nd `  ( 1st `  t ) )
>.  /  s ]_ C
) )
230229anbi1d 741 . . . . . . . . . 10  |-  ( ( 1st `  t )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )  <-> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ <. ( 1st `  ( 1st `  t
) ) ,  ( 2nd `  ( 1st `  t ) ) >.  /  s ]_ C  /\  -.  ( ( 2nd `  t )  =  N  /\  ( ( ( 1st `  ( 1st `  t ) ) `  N )  =  0  /\  ( ( 2nd `  ( 1st `  t
) ) `  N
)  =  N ) ) ) ) )
231224, 230syl 17 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )  <-> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ <. ( 1st `  ( 1st `  t
) ) ,  ( 2nd `  ( 1st `  t ) ) >.  /  s ]_ C  /\  -.  ( ( 2nd `  t )  =  N  /\  ( ( ( 1st `  ( 1st `  t ) ) `  N )  =  0  /\  ( ( 2nd `  ( 1st `  t
) ) `  N
)  =  N ) ) ) ) )
232223, 231bitr4d 271 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( E. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) ) ) )
233 frn 6053 . . . . . . . . . . . . . . 15  |-  ( x : ( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N ) )  ->  ran  x  C_  ( (
0 ... K )  ^m  ( 1 ... N
) ) )
234102, 233syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) )  ->  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )
235234anim2i 593 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( ph  /\ 
ran  x  C_  (
( 0 ... K
)  ^m  ( 1 ... N ) ) ) )
236 dfss3 3592 . . . . . . . . . . . . . 14  |-  ( ( 0 ... ( N  -  1 ) ) 
C_  ran  ( p  e.  ran  x  |->  B )  <->  A. n  e.  (
0 ... ( N  - 
1 ) ) n  e.  ran  ( p  e.  ran  x  |->  B ) )
237 vex 3203 . . . . . . . . . . . . . . . 16  |-  n  e. 
_V
238 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ran  x  |->  B )  =  ( p  e.  ran  x  |->  B )
239238elrnmpt 5372 . . . . . . . . . . . . . . . 16  |-  ( n  e.  _V  ->  (
n  e.  ran  (
p  e.  ran  x  |->  B )  <->  E. p  e.  ran  x  n  =  B ) )
240237, 239ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( n  e.  ran  ( p  e.  ran  x  |->  B )  <->  E. p  e.  ran  x  n  =  B
)
241240ralbii 2980 . . . . . . . . . . . . . 14  |-  ( A. n  e.  ( 0 ... ( N  - 
1 ) ) n  e.  ran  ( p  e.  ran  x  |->  B )  <->  A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e.  ran  x  n  =  B
)
242236, 241sylbb 209 . . . . . . . . . . . . 13  |-  ( ( 0 ... ( N  -  1 ) ) 
C_  ran  ( p  e.  ran  x  |->  B )  ->  A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e.  ran  x  n  =  B
)
243 1eluzge0 11732 . . . . . . . . . . . . . . . . 17  |-  1  e.  ( ZZ>= `  0 )
244 fzss1 12380 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( N  - 
1 ) )  C_  ( 0 ... ( N  -  1 ) ) )
245 ssralv 3666 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... ( N  -  1 ) ) 
C_  ( 0 ... ( N  -  1 ) )  ->  ( A. n  e.  (
0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B  ->  A. n  e.  ( 1 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )
)
246243, 244, 245mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B  ->  A. n  e.  ( 1 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )
24764nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  N  e.  CC )
248 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
249247, 248syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
250 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
251186, 250syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
252 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
253 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
254251, 252, 2533syl 18 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
255249, 254eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
256 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 1 ... ( N  - 
1 ) )  C_  ( 1 ... N
) )
257255, 256syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 1 ... N ) )
258257sselda 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  n  e.  ( 1 ... N
) )
259258adantlr 751 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... ( N  - 
1 ) ) )  ->  n  e.  ( 1 ... N ) )
260 simplr 792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  ->  ran  x  C_  (
( 0 ... K
)  ^m  ( 1 ... N ) ) )
261 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ran  x  C_  (
( 0 ... K
)  ^m  ( 1 ... N ) )  /\  p  e.  ran  x )  ->  p  e.  ( ( 0 ... K )  ^m  (
1 ... N ) ) )
262 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  ( ( 0 ... K )  ^m  ( 1 ... N
) )  ->  p : ( 1 ... N ) --> ( 0 ... K ) )
263261, 262syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ran  x  C_  (
( 0 ... K
)  ^m  ( 1 ... N ) )  /\  p  e.  ran  x )  ->  p : ( 1 ... N ) --> ( 0 ... K ) )
264260, 263sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ran  x  C_  ( (
0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  /\  p  e.  ran  x )  ->  p : ( 1 ... N ) --> ( 0 ... K ) )
265 poimirlem28.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  B  <  n
)
266 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ZZ )
267266zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  e.  ( 1 ... N )  ->  n  e.  RR )
268267ltnrd 10171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  e.  ( 1 ... N )  ->  -.  n  <  n )
269 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  B  ->  (
n  <  n  <->  B  <  n ) )
270269notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  B  ->  ( -.  n  <  n  <->  -.  B  <  n ) )
271268, 270syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 1 ... N )  ->  (
n  =  B  ->  -.  B  <  n ) )
272271necon2ad 2809 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 1 ... N )  ->  ( B  <  n  ->  n  =/=  B ) )
2732723ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  0 )  ->  ( B  < 
n  ->  n  =/=  B ) )
274273adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  ( B  < 
n  ->  n  =/=  B ) )
275265, 274mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  n  =/=  B
)
2762753exp2 1285 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( n  e.  ( 1 ... N )  ->  ( p : ( 1 ... N
) --> ( 0 ... K )  ->  (
( p `  n
)  =  0  ->  n  =/=  B ) ) ) )
277276imp31 448 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  p : ( 1 ... N ) --> ( 0 ... K ) )  ->  ( ( p `
 n )  =  0  ->  n  =/=  B ) )
278277necon2d 2817 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  p : ( 1 ... N ) --> ( 0 ... K ) )  ->  ( n  =  B  ->  ( p `  n )  =/=  0
) )
279278adantllr 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ran  x  C_  ( (
0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  /\  p : ( 1 ... N ) --> ( 0 ... K
) )  ->  (
n  =  B  -> 
( p `  n
)  =/=  0 ) )
280264, 279syldan 487 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ran  x  C_  ( (
0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  /\  p  e.  ran  x )  ->  (
n  =  B  -> 
( p `  n
)  =/=  0 ) )
281280reximdva 3017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  ->  ( E. p  e.  ran  x  n  =  B  ->  E. p  e.  ran  x ( p `
 n )  =/=  0 ) )
282259, 281syldan 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( E. p  e.  ran  x  n  =  B  ->  E. p  e.  ran  x ( p `
 n )  =/=  0 ) )
283282ralimdva 2962 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  (
1 ... N ) ) )  ->  ( A. n  e.  ( 1 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B  ->  A. n  e.  ( 1 ... ( N  - 
1 ) ) E. p  e.  ran  x
( p `  n
)  =/=  0 ) )
284283imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 1 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e.  ran  x ( p `  n )  =/=  0
)
285246, 284sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e.  ran  x ( p `  n )  =/=  0
)
286285biantrurd 529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  ( E. p  e. 
ran  x ( p `
 N )  =/=  0  <->  ( A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 N )  =/=  0 ) ) )
287 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
28864, 287syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
289 fzm1 12420 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( n  e.  ( 1 ... N
)  <->  ( n  e.  ( 1 ... ( N  -  1 ) )  \/  n  =  N ) ) )
290288, 289syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( n  e.  ( 1 ... N )  <-> 
( n  e.  ( 1 ... ( N  -  1 ) )  \/  n  =  N ) ) )
291 elun 3753 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ( 1 ... ( N  - 
1 ) )  u. 
{ N } )  <-> 
( n  e.  ( 1 ... ( N  -  1 ) )  \/  n  e.  { N } ) )
292180orbi2i 541 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( 1 ... ( N  - 
1 ) )  \/  n  e.  { N } )  <->  ( n  e.  ( 1 ... ( N  -  1 ) )  \/  n  =  N ) )
293291, 292bitri 264 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ( 1 ... ( N  - 
1 ) )  u. 
{ N } )  <-> 
( n  e.  ( 1 ... ( N  -  1 ) )  \/  n  =  N ) )
294290, 293syl6bbr 278 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( n  e.  ( 1 ... N )  <-> 
n  e.  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) ) )
295294eqrdv 2620 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
296295raleqdv 3144 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  <->  A. n  e.  ( ( 1 ... ( N  -  1 ) )  u.  { N } ) E. p  e.  ran  x ( p `
 n )  =/=  0 ) )
297 ralunb 3794 . . . . . . . . . . . . . . . . 17  |-  ( A. n  e.  ( (
1 ... ( N  - 
1 ) )  u. 
{ N } ) E. p  e.  ran  x ( p `  n )  =/=  0  <->  ( A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e.  ran  x ( p `  n )  =/=  0  /\  A. n  e.  { N } E. p  e. 
ran  x ( p `
 n )  =/=  0 ) )
298296, 297syl6bb 276 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  <->  ( A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  A. n  e.  { N } E. p  e.  ran  x ( p `  n )  =/=  0 ) ) )
299 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  N  ->  (
p `  n )  =  ( p `  N ) )
300299neeq1d 2853 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  N  ->  (
( p `  n
)  =/=  0  <->  (
p `  N )  =/=  0 ) )
301300rexbidv 3052 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  N  ->  ( E. p  e.  ran  x ( p `  n )  =/=  0  <->  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )
302301ralsng 4218 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( A. n  e.  { N } E. p  e.  ran  x ( p `  n )  =/=  0  <->  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )
30364, 302syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. n  e. 
{ N } E. p  e.  ran  x ( p `  n )  =/=  0  <->  E. p  e.  ran  x ( p `
 N )  =/=  0 ) )
304303anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  A. n  e.  { N } E. p  e.  ran  x ( p `  n )  =/=  0 )  <->  ( A. n  e.  ( 1 ... ( N  - 
1 ) ) E. p  e.  ran  x
( p `  n
)  =/=  0  /\ 
E. p  e.  ran  x ( p `  N )  =/=  0
) ) )
305298, 304bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  <->  ( A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 N )  =/=  0 ) ) )
306305ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  <->  ( A. n  e.  ( 1 ... ( N  -  1 ) ) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 N )  =/=  0 ) ) )
307 0z 11388 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  ZZ
308 1z 11407 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  ZZ
309 fzshftral 12428 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
ran  x  n  =  B  <->  A. m  e.  ( ( 0  +  1 ) ... ( ( N  -  1 )  +  1 ) )
[. ( m  - 
1 )  /  n ]. E. p  e.  ran  x  n  =  B
) )
310307, 308, 309mp3an13 1415 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  -  1 )  e.  ZZ  ->  ( A. n  e.  (
0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B  <->  A. m  e.  ( ( 0  +  1 ) ... (
( N  -  1 )  +  1 ) ) [. ( m  -  1 )  /  n ]. E. p  e. 
ran  x  n  =  B ) )
311186, 250, 3103syl 18 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
ran  x  n  =  B  <->  A. m  e.  ( ( 0  +  1 ) ... ( ( N  -  1 )  +  1 ) )
[. ( m  - 
1 )  /  n ]. E. p  e.  ran  x  n  =  B
) )
312 0p1e1 11132 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0  +  1 )  =  1
313312a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 0  +  1 )  =  1 )
314313, 249oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 0  +  1 ) ... (
( N  -  1 )  +  1 ) )  =  ( 1 ... N ) )
315314raleqdv 3144 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A. m  e.  ( ( 0  +  1 ) ... (
( N  -  1 )  +  1 ) ) [. ( m  -  1 )  /  n ]. E. p  e. 
ran  x  n  =  B  <->  A. m  e.  ( 1 ... N )
[. ( m  - 
1 )  /  n ]. E. p  e.  ran  x  n  =  B
) )
316311, 315bitrd 268 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
ran  x  n  =  B  <->  A. m  e.  ( 1 ... N )
[. ( m  - 
1 )  /  n ]. E. p  e.  ran  x  n  =  B
) )
317 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  -  1 )  e. 
_V
318 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( m  - 
1 )  ->  (
n  =  B  <->  ( m  -  1 )  =  B ) )
319318rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  ( m  - 
1 )  ->  ( E. p  e.  ran  x  n  =  B  <->  E. p  e.  ran  x
( m  -  1 )  =  B ) )
320317, 319sbcie 3470 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( [. ( m  -  1
)  /  n ]. E. p  e.  ran  x  n  =  B  <->  E. p  e.  ran  x
( m  -  1 )  =  B )
321320ralbii 2980 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. m  e.  ( 1 ... N ) [. ( m  -  1
)  /  n ]. E. p  e.  ran  x  n  =  B  <->  A. m  e.  ( 1 ... N ) E. p  e.  ran  x
( m  -  1 )  =  B )
322 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
323322eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  n  ->  (
( m  -  1 )  =  B  <->  ( n  -  1 )  =  B ) )
324323rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  ( E. p  e.  ran  x ( m  - 
1 )  =  B  <->  E. p  e.  ran  x ( n  - 
1 )  =  B ) )
325324cbvralv 3171 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. m  e.  ( 1 ... N ) E. p  e.  ran  x
( m  -  1 )  =  B  <->  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( n  -  1 )  =  B )
326321, 325bitri 264 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. m  e.  ( 1 ... N ) [. ( m  -  1
)  /  n ]. E. p  e.  ran  x  n  =  B  <->  A. n  e.  ( 1 ... N ) E. p  e.  ran  x
( n  -  1 )  =  B )
327316, 326syl6bb 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
ran  x  n  =  B  <->  A. n  e.  ( 1 ... N ) E. p  e.  ran  x ( n  - 
1 )  =  B ) )
328327biimpa 501 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  A. n  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
ran  x  n  =  B )  ->  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( n  -  1 )  =  B )
329328adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  A. n  e.  ( 1 ... N ) E. p  e.  ran  x ( n  - 
1 )  =  B )
330 poimirlem28.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  K ) )  ->  B  =/=  ( n  - 
1 ) )
331330necomd 2849 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  K ) )  -> 
( n  -  1 )  =/=  B )
3323313exp2 1285 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( n  e.  ( 1 ... N )  ->  ( p : ( 1 ... N
) --> ( 0 ... K )  ->  (
( p `  n
)  =  K  -> 
( n  -  1 )  =/=  B ) ) ) )
333332imp31 448 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  p : ( 1 ... N ) --> ( 0 ... K ) )  ->  ( ( p `
 n )  =  K  ->  ( n  -  1 )  =/= 
B ) )
334333necon2d 2817 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  p : ( 1 ... N ) --> ( 0 ... K ) )  ->  ( ( n  -  1 )  =  B  ->  ( p `  n )  =/=  K
) )
335334adantllr 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ran  x  C_  ( (
0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  /\  p : ( 1 ... N ) --> ( 0 ... K
) )  ->  (
( n  -  1 )  =  B  -> 
( p `  n
)  =/=  K ) )
336264, 335syldan 487 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ran  x  C_  ( (
0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  /\  p  e.  ran  x )  ->  (
( n  -  1 )  =  B  -> 
( p `  n
)  =/=  K ) )
337336reximdva 3017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  n  e.  ( 1 ... N ) )  ->  ( E. p  e.  ran  x ( n  -  1 )  =  B  ->  E. p  e.  ran  x ( p `
 n )  =/= 
K ) )
338337ralimdva 2962 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  (
1 ... N ) ) )  ->  ( A. n  e.  ( 1 ... N ) E. p  e.  ran  x
( n  -  1 )  =  B  ->  A. n  e.  (
1 ... N ) E. p  e.  ran  x
( p `  n
)  =/=  K ) )
339338imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 1 ... N ) E. p  e.  ran  x
( n  -  1 )  =  B )  ->  A. n  e.  ( 1 ... N ) E. p  e.  ran  x ( p `  n )  =/=  K
)
340329, 339syldan 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  A. n  e.  ( 1 ... N ) E. p  e.  ran  x ( p `  n )  =/=  K
)
341340biantrud 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  <->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/= 
K ) ) )
342 r19.26 3064 . . . . . . . . . . . . . . 15  |-  ( A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
)  <->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/= 
K ) )
343341, 342syl6bbr 278 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  ( A. n  e.  ( 1 ... N
) E. p  e. 
ran  x ( p `
 n )  =/=  0  <->  A. n  e.  ( 1 ... N ) ( E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) ) )
344286, 306, 3433bitr2d 296 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ran  x  C_  ( ( 0 ... K )  ^m  ( 1 ... N
) ) )  /\  A. n  e.  ( 0 ... ( N  - 
1 ) ) E. p  e.  ran  x  n  =  B )  ->  ( E. p  e. 
ran  x ( p `
 N )  =/=  0  <->  A. n  e.  ( 1 ... N ) ( E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) ) )
345235, 242, 344syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  /\  ( 0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B ) )  ->  ( E. p  e.  ran  x ( p `
 N )  =/=  0  <->  A. n  e.  ( 1 ... N ) ( E. p  e. 
ran  x ( p `
 n )  =/=  0  /\  E. p  e.  ran  x ( p `
 n )  =/= 
K ) ) )
346345pm5.32da 673 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( (
( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  E. p  e.  ran  x ( p `
 N )  =/=  0 )  <->  ( (
0 ... ( N  - 
1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) )
347346anbi2d 740 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  ( (
x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )  <->  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) ) )
348347rexbidva 3049 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )  <->  E. x  e.  ( ( ( 0 ... K )  ^m  (
1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) ) )
349348adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( E. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  E. p  e.  ran  x
( p `  N
)  =/=  0 ) )  <->  E. x  e.  ( ( ( 0 ... K )  ^m  (
1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) ) )
350194rexeqdv 3145 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( E. j  e.  ( ( 0 ... N )  \  { N } ) i  = 
[_ ( 1st `  t
)  /  s ]_ C 
<->  E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
351350biimpd 219 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( E. j  e.  ( ( 0 ... N )  \  { N } ) i  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
352351ralimdv 2963 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  { N } ) i  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
353172rexeqdv 3145 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  t )  =  N  ->  ( E. j  e.  (
( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( ( 0 ... N ) 
\  { N }
) i  =  [_ ( 1st `  t )  /  s ]_ C
) )
354353ralbidv 2986 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  t )  =  N  ->  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  { N } ) i  = 
[_ ( 1st `  t
)  /  s ]_ C ) )
355354imbi1d 331 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  t )  =  N  ->  (
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C
)  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  { N } ) i  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) ) )
356352, 355syl5ibrcom 237 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  t
)  =  N  -> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) )
357356com23 86 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( ( 2nd `  t )  =  N  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) )
358357imp 445 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  (
( 2nd `  t
)  =  N  ->  A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
359358adantrd 484 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  (
( ( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) )  ->  A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
360359pm4.71rd 667 . . . . . . . . . . . 12  |-  ( (
ph  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  (
( ( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) )  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) ) ) )
361 an12 838 . . . . . . . . . . . . 13  |-  ( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )  <-> 
( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) )
362 3anass 1042 . . . . . . . . . . . . . 14  |-  ( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N )  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )
363362anbi2i 730 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )  <->  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  (
( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) )
364361, 363bitr4i 267 . . . . . . . . . . . 12  |-  ( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )  <-> 
( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) )
365360, 364syl6bb 276 . . . . . . . . . . 11  |-  ( (
ph  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  (
( ( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) )  <->  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) )
366365notbid 308 . . . . . . . . . 10  |-  ( (
ph  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  ( -.  ( ( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) )  <->  -.  (
( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) )
367366pm5.32da 673 . . . . . . . . 9  |-  ( ph  ->  ( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )  <-> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) ) )
368367adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( ( ( 1st `  ( 1st `  t
) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N ) ) )  <-> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  (
( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) ) )
369232, 349, 3683bitr3d 298 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( E. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) )  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  -.  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) ) )
370369rabbidva 3188 . . . . . 6  |-  ( ph  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  E. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  =  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) } )
371 iunrab 4567 . . . . . 6  |-  U_ x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  =  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  E. x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }
372 difrab 3901 . . . . . 6  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) ) }
373370, 371, 3723eqtr4g 2681 . . . . 5  |-  ( ph  ->  U_ x  e.  ( ( ( 0 ... K )  ^m  (
1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  =  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  \  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) )
374373fveq2d 6195 . . . 4  |-  ( ph  ->  ( # `  U_ x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  =  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  \  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) ) )
37527, 28mp1i 13 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) )  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  e.  Fin )
376 simpl 473 . . . . . . . . . . . 12  |-  ( ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) )  ->  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
377376a1i 11 . . . . . . . . . . 11  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) )  ->  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
378377ss2rabi 3684 . . . . . . . . . 10  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } 
C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
379378sseli 3599 . . . . . . . . 9  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  ->  s  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  x  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )
380 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  s  ->  ( 2nd `  t )  =  ( 2nd `  s
) )
381380breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( t  =  s  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  s ) ) )
382381ifbid 4108 . . . . . . . . . . . . . . . 16  |-  ( t  =  s  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) ) )
383382csbeq1d 3540 . . . . . . . . . . . . . . 15  |-  ( t  =  s  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  s ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
384 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  s  ->  ( 1st `  t )  =  ( 1st `  s
) )
385384fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( t  =  s  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  s ) ) )
386384fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  s  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  s ) ) )
387386imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  s  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  s ) )
" ( 1 ... j ) ) )
388387xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  s  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  s ) ) "
( 1 ... j
) )  X.  {
1 } ) )
389386imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  s  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) ) )
390389xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  s  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  s ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
391388, 390uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( t  =  s  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  s ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
392385, 391oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( t  =  s  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
393392csbeq2dv 3992 . . . . . . . . . . . . . . 15  |-  ( t  =  s  ->  [_ if ( y  <  ( 2nd `  s ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  s ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
394383, 393eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( t  =  s  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  s ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
395394mpteq2dv 4745 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
396395eqeq2d 2632 . . . . . . . . . . . 12  |-  ( t  =  s  ->  (
x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
397 eqcom 2629 . . . . . . . . . . . 12  |-  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x )
398396, 397syl6bb 276 . . . . . . . . . . 11  |-  ( t  =  s  ->  (
x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x ) )
399398elrab 3363 . . . . . . . . . 10  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  <-> 
( s  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x ) )
400399simprbi 480 . . . . . . . . 9  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x )
401379, 400syl 17 . . . . . . . 8  |-  ( s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  ->  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x )
402401rgen 2922 . . . . . . 7  |-  A. s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x
403402rgenw 2924 . . . . . 6  |-  A. x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) A. s  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x
404 invdisj 4638 . . . . . 6  |-  ( A. x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) A. s  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) }  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  s
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  s ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  s
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  s ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  x  -> Disj  x  e.  ( ( ( 0 ... K )  ^m  (
1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )
405403, 404mp1i 13 . . . . 5  |-  ( ph  -> Disj  x  e.  ( (
( 0 ... K
)  ^m  ( 1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )
4068, 375, 405hashiun 14554 . . . 4  |-  ( ph  ->  ( # `  U_ x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  =  sum_ x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) )
407374, 406eqtr3d 2658 . . 3  |-  ( ph  ->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) )  =  sum_ x  e.  ( ( ( 0 ... K )  ^m  ( 1 ... N
) )  ^m  (
0 ... ( N  - 
1 ) ) ) ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } ) )
408 fo1st 7188 . . . . . . . . . . . . 13  |-  1st : _V -onto-> _V
409 fofun 6116 . . . . . . . . . . . . 13  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
410408, 409ax-mp 5 . . . . . . . . . . . 12  |-  Fun  1st
411 ssv 3625 . . . . . . . . . . . . 13  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  _V
412 fof 6115 . . . . . . . . . . . . . . 15  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
413408, 412ax-mp 5 . . . . . . . . . . . . . 14  |-  1st : _V
--> _V
414413fdmi 6052 . . . . . . . . . . . . 13  |-  dom  1st  =  _V
415411, 414sseqtr4i 3638 . . . . . . . . . . . 12  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  dom  1st
416 fores 6124 . . . . . . . . . . . 12  |-  ( ( Fun  1st  /\  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  dom  1st )  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) )
417410, 415, 416mp2an 708 . . . . . . . . . . 11  |-  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )
418 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  ( 2nd `  t )  =  ( 2nd `  x
) )
419418eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( t  =  x  ->  (
( 2nd `  t
)  =  N  <->  ( 2nd `  x )  =  N ) )
420 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  x  ->  ( 1st `  t )  =  ( 1st `  x
) )
421420csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  x  ->  [_ ( 1st `  t )  / 
s ]_ C  =  [_ ( 1st `  x )  /  s ]_ C
)
422421eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  x  ->  (
i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  i  =  [_ ( 1st `  x
)  /  s ]_ C ) )
423422rexbidv 3052 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  ( E. j  e.  (
0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C ) )
424423ralbidv 2986 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C ) )
425420fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  x  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  x ) ) )
426425fveq1d 6193 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  (
( 1st `  ( 1st `  t ) ) `
 N )  =  ( ( 1st `  ( 1st `  x ) ) `
 N ) )
427426eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  (
( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  <->  ( ( 1st `  ( 1st `  x
) ) `  N
)  =  0 ) )
428420fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  x  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  x ) ) )
429428fveq1d 6193 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  (
( 2nd `  ( 1st `  t ) ) `
 N )  =  ( ( 2nd `  ( 1st `  x ) ) `
 N ) )
430429eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  (
( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N  <->  ( ( 2nd `  ( 1st `  x
) ) `  N
)  =  N ) )
431424, 427, 4303anbi123d 1399 . . . . . . . . . . . . . . . . 17  |-  ( t  =  x  ->  (
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N )  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) ) )
432419, 431anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( t  =  x  ->  (
( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )  <->  ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) ) ) )
433432rexrab 3370 . . . . . . . . . . . . . . 15  |-  ( E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s  <->  E. x  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s ) )
434 xp1st 7198 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  x )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
435434anim1i 592 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  ->  (
( 1st `  x
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) ) )
436 eleq1 2689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x )  =  s  ->  (
( 1st `  x
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  <->  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) )
437 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( s  =  ( 1st `  x
)  ->  C  =  [_ ( 1st `  x
)  /  s ]_ C )
438437eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1st `  x )  =  s  ->  C  =  [_ ( 1st `  x
)  /  s ]_ C )
439438eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1st `  x )  =  s  ->  [_ ( 1st `  x )  / 
s ]_ C  =  C )
440439eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  x )  =  s  ->  (
i  =  [_ ( 1st `  x )  / 
s ]_ C  <->  i  =  C ) )
441440rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1st `  x )  =  s  ->  ( E. j  e.  (
0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C ) )
442441ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  x )  =  s  ->  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C ) )
443 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  x )  =  s  ->  ( 1st `  ( 1st `  x
) )  =  ( 1st `  s ) )
444443fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1st `  x )  =  s  ->  (
( 1st `  ( 1st `  x ) ) `
 N )  =  ( ( 1st `  s
) `  N )
)
445444eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  x )  =  s  ->  (
( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  <->  ( ( 1st `  s ) `  N
)  =  0 ) )
446 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  x )  =  s  ->  ( 2nd `  ( 1st `  x
) )  =  ( 2nd `  s ) )
447446fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1st `  x )  =  s  ->  (
( 2nd `  ( 1st `  x ) ) `
 N )  =  ( ( 2nd `  s
) `  N )
)
448447eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  x )  =  s  ->  (
( ( 2nd `  ( 1st `  x ) ) `
 N )  =  N  <->  ( ( 2nd `  s ) `  N
)  =  N ) )
449442, 445, 4483anbi123d 1399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x )  =  s  ->  (
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N )  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) ) )
450436, 449anbi12d 747 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x )  =  s  ->  (
( ( 1st `  x
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  <->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) ) )
451435, 450syl5ibcom 235 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  ->  (
( 1st `  x
)  =  s  -> 
( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) ) )
452451adantrl 752 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) ) )  -> 
( ( 1st `  x
)  =  s  -> 
( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) ) )
453452expimpd 629 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s )  ->  (
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) ) )
454453rexlimiv 3027 . . . . . . . . . . . . . . . 16  |-  ( E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s )  ->  (
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) )
455 nn0fz0 12437 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  <->  N  e.  (
0 ... N ) )
456174, 455sylib 208 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  ( 0 ... N ) )
457 opelxpi 5148 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  N  e.  ( 0 ... N ) )  ->  <. s ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
458456, 457sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ph )  ->  <. s ,  N >.  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
459458ancoms 469 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  ->  <. s ,  N >.  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
460 opelxp2 5151 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
s ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  N  e.  ( 0 ... N
) )
461 op2ndg 7181 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( 2nd `  <. s ,  N >. )  =  N )
462461biantrurd 529 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N )  <-> 
( ( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) ) ) )
463 op1stg 7180 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( 1st `  <. s ,  N >. )  =  s )
464 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  =  ( 1st `  <. s ,  N >. )  ->  C  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C )
465464eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 1st `  <. s ,  N >. )  =  s  ->  C  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C )
466465eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 1st `  <. s ,  N >. )  =  s  ->  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  =  C )
467463, 466syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  =  C )
468467eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( i  = 
[_ ( 1st `  <. s ,  N >. )  /  s ]_ C  <->  i  =  C ) )
469468rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  <->  E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C ) )
470469ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C ) )
471463fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( 1st `  ( 1st `  <. s ,  N >. ) )  =  ( 1st `  s ) )
472471fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  ( ( 1st `  s ) `  N
) )
473472eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( ( 1st `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  0  <->  (
( 1st `  s
) `  N )  =  0 ) )
474463fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( 2nd `  ( 1st `  <. s ,  N >. ) )  =  ( 2nd `  s ) )
475474fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( 2nd `  ( 1st `  <. s ,  N >. )
) `  N )  =  ( ( 2nd `  s ) `  N
) )
476475eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( ( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N  <->  ( ( 2nd `  s ) `  N )  =  N ) )
477470, 473, 4763anbi123d 1399 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N )  <-> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) ) )
478463biantrud 528 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( ( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  (
( 1st `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  <->  ( ( ( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  (
( 1st `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  /\  ( 1st `  <. s ,  N >. )  =  s ) ) )
479462, 477, 4783bitr3d 298 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( s  e.  _V  /\  N  e.  ( 0 ... N ) )  ->  ( ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N )  <->  ( (
( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  /\  ( 1st `  <. s ,  N >. )  =  s ) ) )
48044, 460, 479sylancr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( <.
s ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N )  <->  ( (
( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  /\  ( 1st `  <. s ,  N >. )  =  s ) ) )
481480biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. s ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) )  -> 
( ( ( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  /\  ( 1st `  <. s ,  N >. )  =  s ) )
482 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. s ,  N >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. s ,  N >. ) )
483482eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  <. s ,  N >.  ->  ( ( 2nd `  x )  =  N  <-> 
( 2nd `  <. s ,  N >. )  =  N ) )
484 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  <. s ,  N >.  ->  ( 1st `  x
)  =  ( 1st `  <. s ,  N >. ) )
485484csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  <. s ,  N >.  ->  [_ ( 1st `  x
)  /  s ]_ C  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C )
486485eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. s ,  N >.  ->  ( i  = 
[_ ( 1st `  x
)  /  s ]_ C 
<->  i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C ) )
487486rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  <. s ,  N >.  ->  ( E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C ) )
488487ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. s ,  N >.  ->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C ) )
489484fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. s ,  N >.  ->  ( 1st `  ( 1st `  x ) )  =  ( 1st `  ( 1st `  <. s ,  N >. ) ) )
490489fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  <. s ,  N >.  ->  ( ( 1st `  ( 1st `  x
) ) `  N
)  =  ( ( 1st `  ( 1st `  <. s ,  N >. ) ) `  N
) )
491490eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. s ,  N >.  ->  ( ( ( 1st `  ( 1st `  x ) ) `  N )  =  0  <-> 
( ( 1st `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  0 ) )
492484fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. s ,  N >.  ->  ( 2nd `  ( 1st `  x ) )  =  ( 2nd `  ( 1st `  <. s ,  N >. ) ) )
493492fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  <. s ,  N >.  ->  ( ( 2nd `  ( 1st `  x
) ) `  N
)  =  ( ( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
) )
494493eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. s ,  N >.  ->  ( ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N  <-> 
( ( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )
495488, 491, 4943anbi123d 1399 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  <. s ,  N >.  ->  ( ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N )  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  (
( 1st `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  0  /\  ( ( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) ) )
496483, 495anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  <. s ,  N >.  ->  ( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  <->  ( ( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) ) ) )
497484eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  <. s ,  N >.  ->  ( ( 1st `  x )  =  s  <-> 
( 1st `  <. s ,  N >. )  =  s ) )
498496, 497anbi12d 747 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  <. s ,  N >.  ->  ( ( ( ( 2nd `  x
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s )  <->  ( (
( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  /\  ( 1st `  <. s ,  N >. )  =  s ) ) )
499498rspcev 3309 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. s ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  (
( ( 2nd `  <. s ,  N >. )  =  N  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  [_ ( 1st `  <. s ,  N >. )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  <. s ,  N >. )
) `  N )  =  0  /\  (
( 2nd `  ( 1st `  <. s ,  N >. ) ) `  N
)  =  N ) )  /\  ( 1st `  <. s ,  N >. )  =  s ) )  ->  E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) ( ( ( 2nd `  x
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s ) )
500481, 499syldan 487 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. s ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) )  ->  E. x  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s ) )
501459, 500sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) )  ->  E. x  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s ) )
502501expl 648 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) )  ->  E. x  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( ( 2nd `  x )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s ) ) )
503454, 502impbid2 216 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) ( ( ( 2nd `  x
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  x )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  x ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  x ) ) `  N )  =  N ) )  /\  ( 1st `  x )  =  s )  <->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) ) )
504433, 503syl5bb 272 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( E. x  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s  <->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) ) )
505504abbidv 2741 . . . . . . . . . . . . 13  |-  ( ph  ->  { s  |  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s }  =  {
s  |  ( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) } )
506 dfimafn 6245 . . . . . . . . . . . . . . 15  |-  ( ( Fun  1st  /\  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  dom  1st )  ->  ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  { y  |  E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  y } )
507410, 415, 506mp2an 708 . . . . . . . . . . . . . 14  |-  ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  { y  |  E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  y }
508 nfv 1843 . . . . . . . . . . . . . . . . . 18  |-  F/ s ( 2nd `  t
)  =  N
509 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ s
( 0 ... ( N  -  1 ) )
510 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ s [_ ( 1st `  t
)  /  s ]_ C
511510nfeq2 2780 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ s  i  =  [_ ( 1st `  t )  / 
s ]_ C
512509, 511nfrex 3007 . . . . . . . . . . . . . . . . . . . 20  |-  F/ s E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C
513509, 512nfral 2945 . . . . . . . . . . . . . . . . . . 19  |-  F/ s A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C
514 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ s ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0
515 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ s ( ( 2nd `  ( 1st `  t ) ) `
 N )  =  N
516513, 514, 515nf3an 1831 . . . . . . . . . . . . . . . . . 18  |-  F/ s ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N )
517508, 516nfan 1828 . . . . . . . . . . . . . . . . 17  |-  F/ s ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )
518 nfcv 2764 . . . . . . . . . . . . . . . . 17  |-  F/_ s
( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )
519517, 518nfrab 3123 . . . . . . . . . . . . . . . 16  |-  F/_ s { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }
520 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ s ( 1st `  x
)  =  y
521519, 520nfrex 3007 . . . . . . . . . . . . . . 15  |-  F/ s E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  y
522 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ y E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s
523 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( y  =  s  ->  (
( 1st `  x
)  =  y  <->  ( 1st `  x )  =  s ) )
524523rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( y  =  s  ->  ( E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  y  <->  E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s ) )
525521, 522, 524cbvab 2746 . . . . . . . . . . . . . 14  |-  { y  |  E. x  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  y }  =  {
s  |  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s }
526507, 525eqtri 2644 . . . . . . . . . . . . 13  |-  ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  { s  |  E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ( 1st `  x )  =  s }
527 df-rab 2921 . . . . . . . . . . . . 13  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  =  { s  |  ( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) ) }
528505, 526, 5273eqtr4g 2681 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st " {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) } )
529 foeq3 6113 . . . . . . . . . . . 12  |-  ( ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) }  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  <-> 
( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) )
530528, 529syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  <-> 
( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) )
531417, 530mpbii 223 . . . . . . . . . 10  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
532 fof 6115 . . . . . . . . . 10  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
533531, 532syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
534 fvres 6207 . . . . . . . . . . . 12  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 x )  =  ( 1st `  x
) )
535 fvres 6207 . . . . . . . . . . . 12  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 y )  =  ( 1st `  y
) )
536534, 535eqeqan12d 2638 . . . . . . . . . . 11  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  ->  ( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 y )  <->  ( 1st `  x )  =  ( 1st `  y ) ) )
537 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )  ->  ( 2nd `  t )  =  N )
538537a1i 11 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) )  ->  ( 2nd `  t )  =  N ) )
539538ss2rabi 3684 . . . . . . . . . . . . . 14  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( 2nd `  t
)  =  N }
540539sseli 3599 . . . . . . . . . . . . 13  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ->  x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( 2nd `  t )  =  N } )
541419elrab 3363 . . . . . . . . . . . . 13  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( 2nd `  t )  =  N }  <->  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  ( 2nd `  x )  =  N ) )
542540, 541sylib 208 . . . . . . . . . . . 12  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ->  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( 2nd `  x
)  =  N ) )
543539sseli 3599 . . . . . . . . . . . . 13  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ->  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( 2nd `  t )  =  N } )
544 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( t  =  y  ->  ( 2nd `  t )  =  ( 2nd `  y
) )
545544eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( t  =  y  ->  (
( 2nd `  t
)  =  N  <->  ( 2nd `  y )  =  N ) )
546545elrab 3363 . . . . . . . . . . . . 13  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( 2nd `  t )  =  N }  <->  ( y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  ( 2nd `  y )  =  N ) )
547543, 546sylib 208 . . . . . . . . . . . 12  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ->  ( y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( 2nd `  y
)  =  N ) )
548 eqtr3 2643 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  N  /\  ( 2nd `  y )  =  N )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) )
549 xpopth 7207 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) )  <->  x  =  y ) )
550549biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) )  ->  x  =  y ) )
551550ancomsd 470 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 2nd `  x
)  =  ( 2nd `  y )  /\  ( 1st `  x )  =  ( 1st `  y
) )  ->  x  =  y ) )
552551expdimp 453 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  /\  ( 2nd `  x )  =  ( 2nd `  y ) )  ->  ( ( 1st `  x )  =  ( 1st `  y
)  ->  x  =  y ) )
553548, 552sylan2 491 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  /\  ( ( 2nd `  x )  =  N  /\  ( 2nd `  y )  =  N ) )  -> 
( ( 1st `  x
)  =  ( 1st `  y )  ->  x  =  y ) )
554553an4s 869 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( 2nd `  x
)  =  N )  /\  ( y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  ( 2nd `  y )  =  N ) )  -> 
( ( 1st `  x
)  =  ( 1st `  y )  ->  x  =  y ) )
555542, 547, 554syl2an 494 . . . . . . . . . . 11  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  ->  ( ( 1st `  x )  =  ( 1st `  y )  ->  x  =  y ) )
556536, 555sylbid 230 . . . . . . . . . 10  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  ->  ( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 y )  ->  x  =  y )
)
557556rgen2a 2977 . . . . . . . . 9  |-  A. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } A. y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  (
( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 y )  ->  x  =  y )
558533, 557jctir 561 . . . . . . . 8  |-  ( ph  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  /\  A. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } A. y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  (
( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 y )  ->  x  =  y )
) )
559 dff13 6512 . . . . . . . 8  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -1-1-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  <->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  /\  A. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } A. y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  (
( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) `
 y )  ->  x  =  y )
) )
560558, 559sylibr 224 . . . . . . 7  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -1-1-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
561 df-f1o 5895 . . . . . . 7  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) }  <->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -1-1-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  /\  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -onto-> {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) )
562560, 531, 561sylanbrc 698 . . . . . 6  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) } )
563 rabfi 8185 . . . . . . . . 9  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  e.  Fin )
56427, 563ax-mp 5 . . . . . . . 8  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  e.  Fin
565564elexi 3213 . . . . . . 7  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  e.  _V
566565f1oen 7976 . . . . . 6  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } -1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) }  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
567562, 566syl 17 . . . . 5  |-  ( ph  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
568 rabfi 8185 . . . . . . 7  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  e.  Fin  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  e.  Fin )
56924, 568ax-mp 5 . . . . . 6  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) }  e.  Fin
570 hashen 13135 . . . . . 6  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  e.  Fin  /\  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... ( N  - 
1 ) ) i  =  C  /\  (
( 1st `  s
) `  N )  =  0  /\  (
( 2nd `  s
) `  N )  =  N ) }  e.  Fin )  ->  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )  <->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) )
571564, 569, 570mp2an 708 . . . . 5  |-  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )  <->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } )
572567, 571sylibr 224 . . . 4  |-  ( ph  ->  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( ( 2nd `  t )  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  ( ( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) )
573572oveq2d 6666 . . 3  |-  ( ph  ->  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )  -  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( ( 2nd `  t
)  =  N  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  (
( 1st `  ( 1st `  t ) ) `
 N )  =  0  /\  ( ( 2nd `  ( 1st `  t ) ) `  N )  =  N ) ) } ) )  =  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) ) )
574204, 407, 5733eqtr3d 2664 . 2  |-  ( ph  -> 
sum_ x  e.  (
( ( 0 ... K )  ^m  (
1 ... N ) )  ^m  ( 0 ... ( N  -  1 ) ) ) (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( x  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  /\  ( ( 0 ... ( N  -  1 ) )  C_  ran  ( p  e.  ran  x  |->  B )  /\  A. n  e.  ( 1 ... N ) ( E. p  e.  ran  x ( p `  n )  =/=  0  /\  E. p  e.  ran  x ( p `  n )  =/=  K
) ) ) } )  =  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) ) )
575167, 574breqtrd 4679 1  |-  ( ph  ->  2  ||  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... ( N  -  1 ) ) i  =  C  /\  ( ( 1st `  s ) `  N
)  =  0  /\  ( ( 2nd `  s
) `  N )  =  N ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   [.wsbc 3435   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ~~ cen 7952   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117   sum_csu 14416    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984
This theorem is referenced by:  poimirlem28  33437
  Copyright terms: Public domain W3C validator