Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem26 Structured version   Visualization version   Unicode version

Theorem poimirlem26 33435
Description: Lemma for poimir 33442 showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem28.1  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  C )
poimirlem28.2  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
Assertion
Ref Expression
poimirlem26  |-  ( ph  ->  2  ||  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) ) )
Distinct variable groups:    f, i,
j, p, s, t    ph, j    j, N    ph, i, p, s, t    B, f, i, j, s, t   
f, K, i, j, p, s, t    f, N, i, p, s, t    C, i, p, t
Allowed substitution hints:    ph( f)    B( p)    C( f, j, s)

Proof of Theorem poimirlem26
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 12773 . . . . . 6  |-  ( 0..^ K )  e.  Fin
2 fzfi 12771 . . . . . 6  |-  ( 1 ... N )  e. 
Fin
3 mapfi 8262 . . . . . 6  |-  ( ( ( 0..^ K )  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( 0..^ K )  ^m  ( 1 ... N ) )  e. 
Fin )
41, 2, 3mp2an 708 . . . . 5  |-  ( ( 0..^ K )  ^m  ( 1 ... N
) )  e.  Fin
5 mapfi 8262 . . . . . . 7  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( 1 ... N )  ^m  (
1 ... N ) )  e.  Fin )
62, 2, 5mp2an 708 . . . . . 6  |-  ( ( 1 ... N )  ^m  ( 1 ... N ) )  e. 
Fin
7 f1of 6137 . . . . . . . 8  |-  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  ->  f :
( 1 ... N
) --> ( 1 ... N ) )
87ss2abi 3674 . . . . . . 7  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  C_  { f  |  f : ( 1 ... N ) --> ( 1 ... N
) }
9 ovex 6678 . . . . . . . 8  |-  ( 1 ... N )  e. 
_V
109, 9mapval 7869 . . . . . . 7  |-  ( ( 1 ... N )  ^m  ( 1 ... N ) )  =  { f  |  f : ( 1 ... N ) --> ( 1 ... N ) }
118, 10sseqtr4i 3638 . . . . . 6  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  C_  ( (
1 ... N )  ^m  ( 1 ... N
) )
12 ssfi 8180 . . . . . 6  |-  ( ( ( ( 1 ... N )  ^m  (
1 ... N ) )  e.  Fin  /\  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  C_  (
( 1 ... N
)  ^m  ( 1 ... N ) ) )  ->  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  Fin )
136, 11, 12mp2an 708 . . . . 5  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  Fin
144, 13pm3.2i 471 . . . 4  |-  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  e. 
Fin  /\  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  Fin )
15 xpfi 8231 . . . 4  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  e.  Fin  /\  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  e.  Fin )  ->  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  e. 
Fin )
1614, 15mp1i 13 . . 3  |-  ( ph  ->  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  e.  Fin )
17 2z 11409 . . . 4  |-  2  e.  ZZ
1817a1i 11 . . 3  |-  ( ph  ->  2  e.  ZZ )
19 snfi 8038 . . . . . . 7  |-  { x }  e.  Fin
20 fzfi 12771 . . . . . . . 8  |-  ( 0 ... N )  e. 
Fin
21 rabfi 8185 . . . . . . . 8  |-  ( ( 0 ... N )  e.  Fin  ->  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) }  e.  Fin )
2220, 21ax-mp 5 . . . . . . 7  |-  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) }  e.  Fin
23 xpfi 8231 . . . . . . 7  |-  ( ( { x }  e.  Fin  /\  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) }  e.  Fin )  ->  ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  e. 
Fin )
2419, 22, 23mp2an 708 . . . . . 6  |-  ( { x }  X.  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  e.  Fin
25 hashcl 13147 . . . . . 6  |-  ( ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  e.  Fin  ->  ( # `
 ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  e.  NN0 )
2624, 25ax-mp 5 . . . . 5  |-  ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  e.  NN0
2726nn0zi 11402 . . . 4  |-  ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  e.  ZZ
2827a1i 11 . . 3  |-  ( (
ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  ->  ( # `
 ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  e.  ZZ )
29 poimir.0 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
3029ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  N  e.  NN )
31 nfv 1843 . . . . . . . . . 10  |-  F/ j  p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t ) " (
1 ... k ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( k  +  1 ) ... N ) )  X.  { 0 } ) ) )
32 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ j [_ k  /  j ]_ [_ t  /  s ]_ C
3332nfeq2 2780 . . . . . . . . . 10  |-  F/ j  B  =  [_ k  /  j ]_ [_ t  /  s ]_ C
3431, 33nfim 1825 . . . . . . . . 9  |-  F/ j ( p  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... k ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( k  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  ->  B  =  [_ k  /  j ]_ [_ t  /  s ]_ C )
35 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
1 ... j )  =  ( 1 ... k
) )
3635imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (
( 2nd `  t
) " ( 1 ... j ) )  =  ( ( 2nd `  t ) " (
1 ... k ) ) )
3736xpeq1d 5138 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  (
( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  t
) " ( 1 ... k ) )  X.  { 1 } ) )
38 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
3938oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
( j  +  1 ) ... N )  =  ( ( k  +  1 ) ... N ) )
4039imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (
( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  t ) " (
( k  +  1 ) ... N ) ) )
4140xpeq1d 5138 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  (
( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  t
) " ( ( k  +  1 ) ... N ) )  X.  { 0 } ) )
4237, 41uneq12d 3768 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  t ) " (
1 ... k ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( k  +  1 ) ... N ) )  X.  { 0 } ) ) )
4342oveq2d 6666 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... k ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( k  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
4443eqeq2d 2632 . . . . . . . . . 10  |-  ( j  =  k  ->  (
p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  <->  p  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... k ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( k  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
45 csbeq1a 3542 . . . . . . . . . . 11  |-  ( j  =  k  ->  [_ t  /  s ]_ C  =  [_ k  /  j ]_ [_ t  /  s ]_ C )
4645eqeq2d 2632 . . . . . . . . . 10  |-  ( j  =  k  ->  ( B  =  [_ t  / 
s ]_ C  <->  B  =  [_ k  /  j ]_ [_ t  /  s ]_ C ) )
4744, 46imbi12d 334 . . . . . . . . 9  |-  ( j  =  k  ->  (
( p  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  ->  B  =  [_ t  /  s ]_ C )  <->  ( p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... k ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( k  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  [_ k  / 
j ]_ [_ t  / 
s ]_ C ) ) )
48 nfv 1843 . . . . . . . . . . 11  |-  F/ s  p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )
49 nfcsb1v 3549 . . . . . . . . . . . 12  |-  F/_ s [_ t  /  s ]_ C
5049nfeq2 2780 . . . . . . . . . . 11  |-  F/ s  B  =  [_ t  /  s ]_ C
5148, 50nfim 1825 . . . . . . . . . 10  |-  F/ s ( p  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  ->  B  =  [_ t  /  s ]_ C )
52 fveq2 6191 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  ( 1st `  s )  =  ( 1st `  t
) )
53 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( s  =  t  ->  ( 2nd `  s )  =  ( 2nd `  t
) )
5453imaeq1d 5465 . . . . . . . . . . . . . . 15  |-  ( s  =  t  ->  (
( 2nd `  s
) " ( 1 ... j ) )  =  ( ( 2nd `  t ) " (
1 ... j ) ) )
5554xpeq1d 5138 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } ) )
5653imaeq1d 5465 . . . . . . . . . . . . . . 15  |-  ( s  =  t  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  t ) " (
( j  +  1 ) ... N ) ) )
5756xpeq1d 5138 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )
5855, 57uneq12d 3768 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )
5952, 58oveq12d 6668 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
6059eqeq2d 2632 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  <->  p  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
61 csbeq1a 3542 . . . . . . . . . . . 12  |-  ( s  =  t  ->  C  =  [_ t  /  s ]_ C )
6261eqeq2d 2632 . . . . . . . . . . 11  |-  ( s  =  t  ->  ( B  =  C  <->  B  =  [_ t  /  s ]_ C ) )
6360, 62imbi12d 334 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( p  =  ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  ->  B  =  C )  <->  ( p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  [_ t  / 
s ]_ C ) ) )
64 poimirlem28.1 . . . . . . . . . 10  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  C )
6551, 63, 64chvar 2262 . . . . . . . . 9  |-  ( p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  [_ t  / 
s ]_ C )
6634, 47, 65chvar 2262 . . . . . . . 8  |-  ( p  =  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... k ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( k  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  [_ k  / 
j ]_ [_ t  / 
s ]_ C )
67 poimirlem28.2 . . . . . . . . 9  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
6867ad4ant14 1293 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
)  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
69 xp1st 7198 . . . . . . . . . 10  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  x
)  e.  ( ( 0..^ K )  ^m  ( 1 ... N
) ) )
70 elmapi 7879 . . . . . . . . . 10  |-  ( ( 1st `  x )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) )  ->  ( 1st `  x
) : ( 1 ... N ) --> ( 0..^ K ) )
7169, 70syl 17 . . . . . . . . 9  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  x
) : ( 1 ... N ) --> ( 0..^ K ) )
7271ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  ( 1st `  x ) : ( 1 ... N
) --> ( 0..^ K ) )
73 xp2nd 7199 . . . . . . . . . 10  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  x
)  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
74 fvex 6201 . . . . . . . . . . 11  |-  ( 2nd `  x )  e.  _V
75 f1oeq1 6127 . . . . . . . . . . 11  |-  ( f  =  ( 2nd `  x
)  ->  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  x
) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
7674, 75elab 3350 . . . . . . . . . 10  |-  ( ( 2nd `  x )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  <-> 
( 2nd `  x
) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
7773, 76sylib 208 . . . . . . . . 9  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  x
) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
7877ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  ( 2nd `  x ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
79 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ j N
80 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ j
x
8180, 32nfcsb 3551 . . . . . . . . . . . . 13  |-  F/_ j [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C
8279, 81nfne 2894 . . . . . . . . . . . 12  |-  F/ j  N  =/=  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C
83 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ t C
8483, 49, 61cbvcsb 3538 . . . . . . . . . . . . . 14  |-  [_ x  /  s ]_ C  =  [_ x  /  t ]_ [_ t  /  s ]_ C
8545csbeq2dv 3992 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  [_ x  /  t ]_ [_ t  /  s ]_ C  =  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C )
8684, 85syl5eq 2668 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  [_ x  /  s ]_ C  =  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C )
8786neeq2d 2854 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( N  =/=  [_ x  /  s ]_ C  <->  N  =/=  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C
) )
8882, 87rspc 3303 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  ( A. j  e.  (
0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  N  =/=  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C ) )
8988impcom 446 . . . . . . . . . 10  |-  ( ( A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  /\  k  e.  (
0 ... N ) )  ->  N  =/=  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C
)
9089adantll 750 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
)  /\  k  e.  ( 0 ... N
) )  ->  N  =/=  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C )
91 1st2nd2 7205 . . . . . . . . . . 11  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
9291csbeq1d 3540 . . . . . . . . . 10  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  ->  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C )
9392ad3antlr 767 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
)  /\  k  e.  ( 0 ... N
) )  ->  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C  =  [_ <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C )
9490, 93neeqtrd 2863 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( (
( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
)  /\  k  e.  ( 0 ... N
) )  ->  N  =/=  [_ <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C )
9530, 66, 68, 72, 78, 94poimirlem25 33434 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  2  ||  ( # `  {
y  e.  ( 0 ... N )  | 
A. i  e.  ( 0 ... ( N  -  1 ) ) E. k  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C } ) )
96 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ k  i  =  [_ x  /  s ]_ C
9781nfeq2 2780 . . . . . . . . . . . . . 14  |-  F/ j  i  =  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C
9886eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (
i  =  [_ x  /  s ]_ C  <->  i  =  [_ x  / 
t ]_ [_ k  / 
j ]_ [_ t  / 
s ]_ C ) )
9996, 97, 98cbvrex 3168 . . . . . . . . . . . . 13  |-  ( E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  <->  E. k  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C
)
10092eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( i  =  [_ x  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C  <->  i  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C ) )
101100rexbidv 3052 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( E. k  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
t ]_ [_ k  / 
j ]_ [_ t  / 
s ]_ C  <->  E. k  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C ) )
10299, 101syl5rbb 273 . . . . . . . . . . . 12  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( E. k  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C 
<->  E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C ) )
103102ralbidv 2986 . . . . . . . . . . 11  |-  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. k  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C 
<-> 
A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C ) )
104 iba 524 . . . . . . . . . . 11  |-  ( A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) ) )
105103, 104sylan9bb 736 . . . . . . . . . 10  |-  ( ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. k  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) ) )
106105rabbidv 3189 . . . . . . . . 9  |-  ( ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  { y  e.  ( 0 ... N )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. k  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C }  =  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )
107106fveq2d 6195 . . . . . . . 8  |-  ( ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  ( # `
 { y  e.  ( 0 ... N
)  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. k  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C } )  =  (
# `  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )
108107adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  ( # `
 { y  e.  ( 0 ... N
)  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. k  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /  t ]_ [_ k  /  j ]_ [_ t  /  s ]_ C } )  =  (
# `  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )
10995, 108breqtrd 4679 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  ->  2  ||  ( # `  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )
110109ex 450 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  ->  ( A. j  e.  (
0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  2  ||  ( # `  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) } ) ) )
111 dvds0 14997 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  2  ||  0 )
11217, 111ax-mp 5 . . . . . . 7  |-  2  ||  0
113 hash0 13158 . . . . . . 7  |-  ( # `  (/) )  =  0
114112, 113breqtrri 4680 . . . . . 6  |-  2  ||  ( # `  (/) )
115 simpr 477 . . . . . . . . . 10  |-  ( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
)  ->  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
)
116115con3i 150 . . . . . . . . 9  |-  ( -. 
A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  -.  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) )
117116ralrimivw 2967 . . . . . . . 8  |-  ( -. 
A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  A. y  e.  ( 0 ... N )  -.  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) )
118 rabeq0 3957 . . . . . . . 8  |-  ( { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) }  =  (/)  <->  A. y  e.  ( 0 ... N )  -.  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) )
119117, 118sylibr 224 . . . . . . 7  |-  ( -. 
A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) }  =  (/) )
120119fveq2d 6195 . . . . . 6  |-  ( -. 
A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  ( # `  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  =  ( # `  (/) ) )
121114, 120syl5breqr 4691 . . . . 5  |-  ( -. 
A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C  ->  2  ||  ( # `  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )
122110, 121pm2.61d1 171 . . . 4  |-  ( (
ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  ->  2  ||  ( # `  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )
123 hashxp 13221 . . . . . 6  |-  ( ( { x }  e.  Fin  /\  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) }  e.  Fin )  ->  ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  =  ( (
# `  { x } )  x.  ( # `
 { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) ) )
12419, 22, 123mp2an 708 . . . . 5  |-  ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  =  ( (
# `  { x } )  x.  ( # `
 { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )
125 vex 3203 . . . . . . 7  |-  x  e. 
_V
126 hashsng 13159 . . . . . . 7  |-  ( x  e.  _V  ->  ( # `
 { x }
)  =  1 )
127125, 126ax-mp 5 . . . . . 6  |-  ( # `  { x } )  =  1
128127oveq1i 6660 . . . . 5  |-  ( (
# `  { x } )  x.  ( # `
 { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  =  ( 1  x.  ( # `  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )
129 hashcl 13147 . . . . . . . 8  |-  ( { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) }  e.  Fin  ->  ( # `  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  e.  NN0 )
13022, 129ax-mp 5 . . . . . . 7  |-  ( # `  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  e.  NN0
131130nn0cni 11304 . . . . . 6  |-  ( # `  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  e.  CC
132131mulid2i 10043 . . . . 5  |-  ( 1  x.  ( # `  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  =  ( # `  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )
133124, 128, 1323eqtri 2648 . . . 4  |-  ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  =  ( # `  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )
134122, 133syl6breqr 4695 . . 3  |-  ( (
ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  ->  2  ||  ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) ) )
13516, 18, 28, 134fsumdvds 15030 . 2  |-  ( ph  ->  2  ||  sum_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) ) )
1364, 13, 15mp2an 708 . . . . . 6  |-  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  e. 
Fin
137 xpfi 8231 . . . . . 6  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  e.  Fin  /\  ( 0 ... N
)  e.  Fin )  ->  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  e.  Fin )
138136, 20, 137mp2an 708 . . . . 5  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin
139 rabfi 8185 . . . . 5  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  e.  Fin )
140138, 139ax-mp 5 . . . 4  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  e.  Fin
14129nncnd 11036 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
142 npcan1 10455 . . . . . . . . . . . 12  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
143141, 142syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
144 nnm1nn0 11334 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
14529, 144syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
146145nn0zd 11480 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
147 uzid 11702 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
148 peano2uz 11741 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
149146, 147, 1483syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
150143, 149eqeltrrd 2702 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
151 fzss2 12381 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
152 ssralv 3666 . . . . . . . . . 10  |-  ( ( 0 ... ( N  -  1 ) ) 
C_  ( 0 ... N )  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) )
153150, 151, 1523syl 18 . . . . . . . . 9  |-  ( ph  ->  ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
154153adantr 481 . . . . . . . 8  |-  ( (
ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) )
155 raldifb 3750 . . . . . . . . . . . 12  |-  ( A. j  e.  ( 0 ... N ) ( j  e/  { ( 2nd `  t ) }  ->  -.  i  =  [_ ( 1st `  t
)  /  s ]_ C )  <->  A. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  -.  i  =  [_ ( 1st `  t )  / 
s ]_ C )
156 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ j
ph
157 nfcsb1v 3549 . . . . . . . . . . . . . . . 16  |-  F/_ j [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C
158157nfeq2 2780 . . . . . . . . . . . . . . 15  |-  F/ j  N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C
159156, 158nfan 1828 . . . . . . . . . . . . . 14  |-  F/ j ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )
160 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ j  i  e.  ( 0 ... ( N  - 
1 ) )
161159, 160nfan 1828 . . . . . . . . . . . . 13  |-  F/ j ( ( ph  /\  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )
162 nnel 2906 . . . . . . . . . . . . . . . . 17  |-  ( -.  j  e/  { ( 2nd `  t ) }  <->  j  e.  {
( 2nd `  t
) } )
163 velsn 4193 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { ( 2nd `  t ) }  <->  j  =  ( 2nd `  t ) )
164162, 163bitri 264 . . . . . . . . . . . . . . . 16  |-  ( -.  j  e/  { ( 2nd `  t ) }  <->  j  =  ( 2nd `  t ) )
165 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  ( 2nd `  t
)  ->  [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C )
166165eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  ( 2nd `  t
)  ->  ( N  =  [_ ( 1st `  t
)  /  s ]_ C 
<->  N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C ) )
167166biimparc 504 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  j  =  ( 2nd `  t
) )  ->  N  =  [_ ( 1st `  t
)  /  s ]_ C )
16829nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  N  e.  RR )
169168ltm1d 10956 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( N  -  1 )  <  N )
170145nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( N  -  1 )  e.  RR )
171170, 168ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( N  - 
1 )  <  N  <->  -.  N  <_  ( N  -  1 ) ) )
172169, 171mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  -.  N  <_  ( N  -  1 ) )
173 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  ( 0 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
174172, 173nsyl 135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  -.  N  e.  ( 0 ... ( N  -  1 ) ) )
175 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  =  N  ->  (
i  e.  ( 0 ... ( N  - 
1 ) )  <->  N  e.  ( 0 ... ( N  -  1 ) ) ) )
176175notbid 308 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  N  ->  ( -.  i  e.  (
0 ... ( N  - 
1 ) )  <->  -.  N  e.  ( 0 ... ( N  -  1 ) ) ) )
177174, 176syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( i  =  N  ->  -.  i  e.  ( 0 ... ( N  -  1 ) ) ) )
178177con2d 129 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( i  e.  ( 0 ... ( N  -  1 ) )  ->  -.  i  =  N ) )
179178imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  -.  i  =  N )
180 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( i  =  N  <->  i  =  [_ ( 1st `  t
)  /  s ]_ C ) )
181180notbid 308 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( -.  i  =  N  <->  -.  i  =  [_ ( 1st `  t
)  /  s ]_ C ) )
182179, 181syl5ibcom 235 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  -.  i  =  [_ ( 1st `  t
)  /  s ]_ C ) )
183167, 182syl5 34 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  /\  j  =  ( 2nd `  t
) )  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C ) )
184183expdimp 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  ->  (
j  =  ( 2nd `  t )  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C ) )
185184an32s 846 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  =  ( 2nd `  t )  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C ) )
186164, 185syl5bi 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( -.  j  e/  { ( 2nd `  t ) }  ->  -.  i  =  [_ ( 1st `  t
)  /  s ]_ C ) )
187 idd 24 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( -.  i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C ) )
188186, 187jad 174 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  e/  {
( 2nd `  t
) }  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C ) )
189188adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  /\  j  e.  ( 0 ... N
) )  ->  (
( j  e/  {
( 2nd `  t
) }  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  -.  i  =  [_ ( 1st `  t )  /  s ]_ C ) )
190161, 189ralimdaa 2958 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A. j  e.  (
0 ... N ) ( j  e/  { ( 2nd `  t ) }  ->  -.  i  =  [_ ( 1st `  t
)  /  s ]_ C )  ->  A. j  e.  ( 0 ... N
)  -.  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) )
191155, 190syl5bir 233 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A. j  e.  (
( 0 ... N
)  \  { ( 2nd `  t ) } )  -.  i  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  A. j  e.  ( 0 ... N )  -.  i  =  [_ ( 1st `  t )  /  s ]_ C
) )
192191con3d 148 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( -.  A. j  e.  ( 0 ... N )  -.  i  =  [_ ( 1st `  t )  /  s ]_ C  ->  -.  A. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  -.  i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
193 dfrex2 2996 . . . . . . . . . 10  |-  ( E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  -.  A. j  e.  ( 0 ... N
)  -.  i  = 
[_ ( 1st `  t
)  /  s ]_ C )
194 dfrex2 2996 . . . . . . . . . 10  |-  ( E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  -.  A. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  -.  i  =  [_ ( 1st `  t )  / 
s ]_ C )
195192, 193, 1943imtr4g 285 . . . . . . . . 9  |-  ( ( ( ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  /\  i  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( E. j  e.  (
0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
196195ralimdva 2962 . . . . . . . 8  |-  ( (
ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  ->  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
197154, 196syld 47 . . . . . . 7  |-  ( (
ph  /\  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
198197expimpd 629 . . . . . 6  |-  ( ph  ->  ( ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
)  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
199198adantr 481 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
)  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
200199ss2rabdv 3683 . . . 4  |-  ( ph  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )
201 hashssdif 13200 . . . 4  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  e.  Fin  /\ 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  ->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  =  ( ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )  -  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) ) )
202140, 200, 201sylancr 695 . . 3  |-  ( ph  ->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  =  ( ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )  -  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) ) )
203 xp2nd 7199 . . . . . . . 8  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  t )  e.  ( 0 ... N
) )
204 df-ne 2795 . . . . . . . . . . . 12  |-  ( N  =/=  [_ ( 1st `  t
)  /  s ]_ C 
<->  -.  N  =  [_ ( 1st `  t )  /  s ]_ C
)
205204ralbii 2980 . . . . . . . . . . 11  |-  ( A. j  e.  ( 0 ... N ) N  =/=  [_ ( 1st `  t
)  /  s ]_ C 
<-> 
A. j  e.  ( 0 ... N )  -.  N  =  [_ ( 1st `  t )  /  s ]_ C
)
206 ralnex 2992 . . . . . . . . . . 11  |-  ( A. j  e.  ( 0 ... N )  -.  N  =  [_ ( 1st `  t )  / 
s ]_ C  <->  -.  E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C
)
207205, 206bitri 264 . . . . . . . . . 10  |-  ( A. j  e.  ( 0 ... N ) N  =/=  [_ ( 1st `  t
)  /  s ]_ C 
<->  -.  E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C
)
20829nnnn0d 11351 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  NN0 )
209 nn0uz 11722 . . . . . . . . . . . . . . . . . . 19  |-  NN0  =  ( ZZ>= `  0 )
210208, 209syl6eleq 2711 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
211143, 210eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
0 ) )
212 fzsplit2 12366 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
0 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 0 ... N )  =  ( ( 0 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
213211, 150, 212syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
214143oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
21529nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ZZ )
216 fzsn 12383 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
217215, 216syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( N ... N
)  =  { N } )
218214, 217eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
219218uneq2d 3767 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 0 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 0 ... ( N  -  1 ) )  u.  { N }
) )
220213, 219eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 ... ( N  -  1 ) )  u.  { N }
) )
221220raleqdv 3144 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  ( ( 0 ... ( N  -  1 ) )  u.  { N }
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) )
222 difss 3737 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) 
C_  ( 0 ... N )
223 ssrexv 3667 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  C_  ( 0 ... N )  -> 
( E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) )
224222, 223ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
)
225224ralimi 2952 . . . . . . . . . . . . . . . 16  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
)
226225biantrurd 529 . . . . . . . . . . . . . . 15  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  ( A. i  e.  { N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  { N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C ) ) )
227 ralunb 3794 . . . . . . . . . . . . . . 15  |-  ( A. i  e.  ( (
0 ... ( N  - 
1 ) )  u. 
{ N } ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  { N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C ) )
228226, 227syl6rbbr 279 . . . . . . . . . . . . . 14  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  ( A. i  e.  (
( 0 ... ( N  -  1 ) )  u.  { N } ) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  { N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
229221, 228sylan9bb 736 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  { N } E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) )
230229adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  { N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
231 nn0fz0 12437 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  <->  N  e.  (
0 ... N ) )
232208, 231sylib 208 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ( 0 ... N ) )
233232ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  ->  N  e.  ( 0 ... N ) )
234 eqeq1 2626 . . . . . . . . . . . . . . . . 17  |-  ( i  =  N  ->  (
i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  N  =  [_ ( 1st `  t
)  /  s ]_ C ) )
235234rexbidv 3052 . . . . . . . . . . . . . . . 16  |-  ( i  =  N  ->  ( E. j  e.  (
0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( 0 ... N ) N  =  [_ ( 1st `  t )  / 
s ]_ C ) )
236235rspcva 3307 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( 0 ... N )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C
)
237 nfv 1843 . . . . . . . . . . . . . . . . 17  |-  F/ j ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )
238 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ j
( 0 ... ( N  -  1 ) )
239 nfre1 3005 . . . . . . . . . . . . . . . . . 18  |-  F/ j E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C
240238, 239nfral 2945 . . . . . . . . . . . . . . . . 17  |-  F/ j A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C
241237, 240nfan 1828 . . . . . . . . . . . . . . . 16  |-  F/ j ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )
242 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( N  e.  ( 0 ... ( N  -  1 ) )  <->  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
243242notbid 308 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( -.  N  e.  ( 0 ... ( N  - 
1 ) )  <->  -.  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) ) )
244174, 243syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  -.  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
245244ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  j  e.  ( 0 ... N ) )  ->  ( N  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  -.  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
246 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  <->  ( j  e.  ( 0 ... N
)  /\  j  =/=  ( 2nd `  t ) ) )
247 diffi 8192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 0 ... N )  e.  Fin  ->  (
( 0 ... N
)  \  { ( 2nd `  t ) } )  e.  Fin )
24820, 247ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  e.  Fin
249 ssrab2 3687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
C_  ( ( 0 ... N )  \  { ( 2nd `  t
) } )
250 ssdomg 8001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  e.  Fin  ->  ( { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  C_  ( (
0 ... N )  \  { ( 2nd `  t
) } )  ->  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  ~<_  ( ( 0 ... N )  \  { ( 2nd `  t
) } ) ) )
251248, 249, 250mp2 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  ~<_  ( ( 0 ... N )  \  {
( 2nd `  t
) } )
252 hashdifsn 13202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( 0 ... N
)  e.  Fin  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  -> 
( # `  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) )  =  ( (
# `  ( 0 ... N ) )  - 
1 ) )
25320, 252mpan 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 2nd `  t )  e.  ( 0 ... N )  ->  ( # `
 ( ( 0 ... N )  \  { ( 2nd `  t
) } ) )  =  ( ( # `  ( 0 ... N
) )  -  1 ) )
254 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ph  ->  1  e.  CC )
255141, 254, 254addsubd 10413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  ( ( N  -  1 )  +  1 ) )
256 hashfz0 13219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  e.  NN0  ->  ( # `  ( 0 ... N
) )  =  ( N  +  1 ) )
257208, 256syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ph  ->  ( # `  (
0 ... N ) )  =  ( N  + 
1 ) )
258257oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  ( ( # `  (
0 ... N ) )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
259 hashfz0 13219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( N  -  1 )  e.  NN0  ->  ( # `  ( 0 ... ( N  -  1 ) ) )  =  ( ( N  -  1 )  +  1 ) )
260145, 259syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  ( # `  (
0 ... ( N  - 
1 ) ) )  =  ( ( N  -  1 )  +  1 ) )
261255, 258, 2603eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( ( # `  (
0 ... N ) )  -  1 )  =  ( # `  (
0 ... ( N  - 
1 ) ) ) )
262253, 261sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  ->  ( # `  (
( 0 ... N
)  \  { ( 2nd `  t ) } ) )  =  (
# `  ( 0 ... ( N  -  1 ) ) ) )
263 fzfi 12771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( 0 ... ( N  - 
1 ) )  e. 
Fin
264 hashen 13135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( 0 ... N )  \  {
( 2nd `  t
) } )  e. 
Fin  /\  ( 0 ... ( N  - 
1 ) )  e. 
Fin )  ->  (
( # `  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) )  =  ( # `  ( 0 ... ( N  -  1 ) ) )  <->  ( (
0 ... N )  \  { ( 2nd `  t
) } )  ~~  ( 0 ... ( N  -  1 ) ) ) )
265248, 263, 264mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  =  ( # `  (
0 ... ( N  - 
1 ) ) )  <-> 
( ( 0 ... N )  \  {
( 2nd `  t
) } )  ~~  ( 0 ... ( N  -  1 ) ) )
266262, 265sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  ->  ( (
0 ... N )  \  { ( 2nd `  t
) } )  ~~  ( 0 ... ( N  -  1 ) ) )
267 rabfi 8185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  e.  Fin  ->  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }  e.  Fin )
268248, 267ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  e.  Fin
269 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( i  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( i  e.  ( 0 ... ( N  -  1 ) )  <->  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
270269biimpac 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) )
271 rabid 3116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( j  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  <-> 
( j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  /\  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) ) )
272271simplbi2com 657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( [_ ( 1st `  t )  /  s ]_ C  e.  ( 0 ... ( N  -  1 ) )  ->  ( j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  -> 
j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } ) )
273270, 272syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  (
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  ->  j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } ) )
274273impancom 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  ->  ( i  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } ) )
275274ancrd 577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  ->  ( i  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  ( j  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) ) )
276275expimpd 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( i  e.  ( 0 ... ( N  -  1 ) )  ->  (
( j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C )  ->  (
j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  /\  i  =  [_ ( 1st `  t )  /  s ]_ C
) ) )
277276reximdv2 3014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( i  e.  ( 0 ... ( N  -  1 ) )  ->  ( E. j  e.  (
( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  E. j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } i  =  [_ ( 1st `  t )  / 
s ]_ C ) )
278271simplbi 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( j  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  ->  j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) )
279274pm4.71rd 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  ->  ( i  = 
[_ ( 1st `  t
)  /  s ]_ C 
<->  ( j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }  /\  i  =  [_ ( 1st `  t )  /  s ]_ C
) ) )
280 df-mpt 4730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  =  { <. k ,  i >.  |  ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) }
281 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  F/ k ( j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }  /\  i  =  [_ ( 1st `  t )  /  s ]_ C
)
282 nfrab1 3122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  F/_ j { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }
283282nfcri 2758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  F/ j  k  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }
284 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  F/_ j [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C
285284nfeq2 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  F/ j  i  =  [_ k  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C
286283, 285nfan 1828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  F/ j ( k  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }  /\  i  =  [_ k  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C )
287 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( j  =  k  ->  (
j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  <-> 
k  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } ) )
288 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( j  =  k  ->  [_ ( 1st `  t )  / 
s ]_ C  =  [_ k  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C )
289288eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( j  =  k  ->  (
i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  i  =  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) )
290287, 289anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( j  =  k  ->  (
( j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }  /\  i  =  [_ ( 1st `  t )  /  s ]_ C
)  <->  ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) ) )
291281, 286, 290cbvopab1 4723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  { <. j ,  i >.  |  ( j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  /\  i  =  [_ ( 1st `  t )  /  s ]_ C
) }  =  { <. k ,  i >.  |  ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) }
292280, 291eqtr4i 2647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  =  { <. j ,  i >.  |  ( j  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) }
293292breqi 4659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( j ( k  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i  <->  j { <. j ,  i >.  |  ( j  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) } i )
294 df-br 4654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( j { <. j ,  i
>.  |  ( j  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) } i  <->  <. j ,  i >.  e.  { <. j ,  i
>.  |  ( j  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) } )
295 opabid 4982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( <.
j ,  i >.  e.  { <. j ,  i
>.  |  ( j  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) }  <->  ( j  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) )
296293, 294, 2953bitri 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( j ( k  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i  <->  ( j  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  /\  i  = 
[_ ( 1st `  t
)  /  s ]_ C ) )
297279, 296syl6bbr 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  ->  ( i  = 
[_ ( 1st `  t
)  /  s ]_ C 
<->  j ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
298278, 297sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( i  e.  ( 0 ... ( N  - 
1 ) )  /\  j  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } )  ->  ( i  =  [_ ( 1st `  t
)  /  s ]_ C 
<->  j ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
299298rexbidva 3049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( i  e.  ( 0 ... ( N  -  1 ) )  ->  ( E. j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  E. j  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) } j ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
300 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  F/_ p { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }
301 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  F/ p  j ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i
302 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  F/_ j
p
303282, 284nfmpt 4746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  F/_ j
( k  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )
304 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  F/_ j
i
305302, 303, 304nfbr 4699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  F/ j  p ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i
306 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( j  =  p  ->  (
j ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i  <->  p (
k  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
307282, 300, 301, 305, 306cbvrexf 3166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( E. j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } j ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i  <->  E. p  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) } p ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i )
308299, 307syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( i  e.  ( 0 ... ( N  -  1 ) )  ->  ( E. j  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  E. p  e.  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) } p ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
309277, 308sylibd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( i  e.  ( 0 ... ( N  -  1 ) )  ->  ( E. j  e.  (
( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  E. p  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } p ( k  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  |->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
310309ralimia 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) } p ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i )
311 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )  =  ( k  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )
312 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  F/_ j
k
313 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  F/_ j
( ( 0 ... N )  \  {
( 2nd `  t
) } )
314284nfel1 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  F/ j
[_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) )
315288eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( j  =  k  ->  ( [_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) )  <->  [_ k  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
316312, 313, 314, 315elrabf 3360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  <-> 
( k  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  /\  [_ k  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) ) )
317316simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  ->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) )
318311, 317fmpti 6383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) : {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } --> ( 0 ... ( N  -  1 ) )
319310, 318jctil 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  (
( k  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) : {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } --> ( 0 ... ( N  -  1 ) )  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) } p ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
320 dffo4 6375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( k  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) : {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }
-onto-> ( 0 ... ( N  -  1 ) )  <->  ( ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) : {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } --> ( 0 ... ( N  -  1 ) )  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. p  e. 
{ j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) } p ( k  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) i ) )
321319, 320sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  (
k  e.  { j  e.  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) : {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }
-onto-> ( 0 ... ( N  -  1 ) ) )
322 fodomfi 8239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  e.  Fin  /\  ( k  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } 
|->  [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) : {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }
-onto-> ( 0 ... ( N  -  1 ) ) )  ->  (
0 ... ( N  - 
1 ) )  ~<_  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )
323268, 321, 322sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  ->  (
0 ... ( N  - 
1 ) )  ~<_  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )
324 endomtr 8014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( 0 ... N )  \  {
( 2nd `  t
) } )  ~~  ( 0 ... ( N  -  1 ) )  /\  ( 0 ... ( N  - 
1 ) )  ~<_  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )  ->  ( (
0 ... N )  \  { ( 2nd `  t
) } )  ~<_  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )
325266, 323, 324syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( ( 0 ... N )  \  {
( 2nd `  t
) } )  ~<_  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )
326 sbth 8080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  ~<_  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  /\  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  ~<_  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )  ->  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
~~  ( ( 0 ... N )  \  { ( 2nd `  t
) } ) )
327251, 325, 326sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  ->  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  ~~  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) )
328 fisseneq 8171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( 0 ... N )  \  {
( 2nd `  t
) } )  e. 
Fin  /\  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) } 
C_  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  /\  { j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } 
~~  ( ( 0 ... N )  \  { ( 2nd `  t
) } ) )  ->  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  =  ( ( 0 ... N )  \  { ( 2nd `  t
) } ) )
329248, 249, 327, 328mp3an12i 1428 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  ->  { j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  / 
s ]_ C  e.  ( 0 ... ( N  -  1 ) ) }  =  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) )
330329eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) }  <-> 
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) ) )
331330biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  ->  j  e.  {
j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } )  |  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) } )
332288equcoms 1947 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  =  j  ->  [_ ( 1st `  t )  / 
s ]_ C  =  [_ k  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C )
333332eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( k  =  j  ->  [_ k  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  =  [_ ( 1st `  t )  /  s ]_ C
)
334333eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  =  j  ->  ( [_ k  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) )  <->  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
335334, 317vtoclga 3272 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  { j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } )  | 
[_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) }  ->  [_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) )
336331, 335syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  j  e.  ( (
0 ... N )  \  { ( 2nd `  t
) } ) )  ->  [_ ( 1st `  t
)  /  s ]_ C  e.  ( 0 ... ( N  - 
1 ) ) )
337246, 336sylan2br 493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  ( j  e.  ( 0 ... N )  /\  j  =/=  ( 2nd `  t ) ) )  ->  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) )
338337expr 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  j  e.  ( 0 ... N ) )  ->  ( j  =/=  ( 2nd `  t
)  ->  [_ ( 1st `  t )  /  s ]_ C  e.  (
0 ... ( N  - 
1 ) ) ) )
339338necon1bd 2812 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  j  e.  ( 0 ... N ) )  ->  ( -.  [_ ( 1st `  t )  /  s ]_ C  e.  ( 0 ... ( N  -  1 ) )  ->  j  =  ( 2nd `  t ) ) )
340245, 339syld 47 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  /\  j  e.  ( 0 ... N ) )  ->  ( N  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  j  =  ( 2nd `  t ) ) )
341340imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( 2nd `  t
)  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  /\  j  e.  ( 0 ... N
) )  /\  N  =  [_ ( 1st `  t
)  /  s ]_ C )  ->  j  =  ( 2nd `  t
) )
342341, 165syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( 2nd `  t
)  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  /\  j  e.  ( 0 ... N
) )  /\  N  =  [_ ( 1st `  t
)  /  s ]_ C )  ->  [_ ( 1st `  t )  / 
s ]_ C  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C )
343 eqtr 2641 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  =  [_ ( 1st `  t )  / 
s ]_ C  /\  [_ ( 1st `  t )  / 
s ]_ C  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C )  ->  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )
344343ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  [_ ( 1st `  t )  /  s ]_ C  ->  ( [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  ->  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C ) )
345344adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( 2nd `  t
)  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  /\  j  e.  ( 0 ... N
) )  /\  N  =  [_ ( 1st `  t
)  /  s ]_ C )  ->  ( [_ ( 1st `  t
)  /  s ]_ C  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  ->  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C ) )
346342, 345mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( 2nd `  t
)  e.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C )  /\  j  e.  ( 0 ... N
) )  /\  N  =  [_ ( 1st `  t
)  /  s ]_ C )  ->  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )
347346exp31 630 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( j  e.  ( 0 ... N )  ->  ( N  = 
[_ ( 1st `  t
)  /  s ]_ C  ->  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C ) ) )
348241, 158, 347rexlimd 3026 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C  ->  N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C ) )
349236, 348syl5 34 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( ( N  e.  ( 0 ... N
)  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
)  ->  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) )
350233, 349mpand 711 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C  ->  N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C ) )
351350pm4.71rd 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) )
352235ralsng 4218 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( A. i  e.  { N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C
) )
35329, 352syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A. i  e. 
{ N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( 0 ... N ) N  =  [_ ( 1st `  t )  / 
s ]_ C ) )
354353ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( A. i  e. 
{ N } E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( 0 ... N ) N  =  [_ ( 1st `  t )  / 
s ]_ C ) )
355230, 351, 3543bitr3rd 299 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C  <->  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) )
356355notbid 308 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( -.  E. j  e.  ( 0 ... N
) N  =  [_ ( 1st `  t )  /  s ]_ C  <->  -.  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C ) ) )
357207, 356syl5bb 272 . . . . . . . . 9  |-  ( ( ( ph  /\  ( 2nd `  t )  e.  ( 0 ... N
) )  /\  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C )  -> 
( A. j  e.  ( 0 ... N
) N  =/=  [_ ( 1st `  t )  /  s ]_ C  <->  -.  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C ) ) )
358357pm5.32da 673 . . . . . . . 8  |-  ( (
ph  /\  ( 2nd `  t )  e.  ( 0 ... N ) )  ->  ( ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ ( 1st `  t
)  /  s ]_ C )  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  -.  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) ) )
359203, 358sylan2 491 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ ( 1st `  t )  /  s ]_ C
)  <->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) ) )
360359rabbidva 3188 . . . . . 6  |-  ( ph  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ ( 1st `  t )  /  s ]_ C
) }  =  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) } )
361 nfv 1843 . . . . . . . . . . . 12  |-  F/ y  t  =  <. x ,  k >.
362 nfv 1843 . . . . . . . . . . . . 13  |-  F/ y  x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )
363 nfrab1 3122 . . . . . . . . . . . . . 14  |-  F/_ y { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) }
364363nfcri 2758 . . . . . . . . . . . . 13  |-  F/ y  k  e.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) }
365362, 364nfan 1828 . . . . . . . . . . . 12  |-  F/ y ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  k  e. 
{ y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )
366361, 365nfan 1828 . . . . . . . . . . 11  |-  F/ y ( t  =  <. x ,  k >.  /\  (
x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  k  e.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )
367 nfv 1843 . . . . . . . . . . 11  |-  F/ k ( t  =  <. x ,  y >.  /\  (
x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  y  e.  ( 0 ... N )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) ) )
368 opeq2 4403 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  <. x ,  k >.  =  <. x ,  y >. )
369368eqeq2d 2632 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
t  =  <. x ,  k >.  <->  t  =  <. x ,  y >.
) )
370 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( k  =  y  ->  (
k  e.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) }  <->  y  e.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )
371 rabid 3116 . . . . . . . . . . . . . . 15  |-  ( y  e.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) }  <->  ( y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) )
372370, 371syl6bb 276 . . . . . . . . . . . . . 14  |-  ( k  =  y  ->  (
k  e.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) }  <->  ( y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) ) )
373372anbi2d 740 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  (
( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  k  e. 
{ y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  <-> 
( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( y  e.  ( 0 ... N )  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) ) ) )
374 3anass 1042 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  y  e.  ( 0 ... N )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) )  <->  ( x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( y  e.  ( 0 ... N )  /\  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) ) )
375373, 374syl6bbr 278 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  k  e. 
{ y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  <-> 
( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) ) )
376369, 375anbi12d 747 . . . . . . . . . . 11  |-  ( k  =  y  ->  (
( t  =  <. x ,  k >.  /\  (
x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  k  e.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  <-> 
( t  =  <. x ,  y >.  /\  (
x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  y  e.  ( 0 ... N )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) ) ) ) )
377366, 367, 376cbvex 2272 . . . . . . . . . 10  |-  ( E. k ( t  = 
<. x ,  k >.  /\  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  k  e. 
{ y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  <->  E. y ( t  =  <. x ,  y
>.  /\  ( x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) ) )
378377exbii 1774 . . . . . . . . 9  |-  ( E. x E. k ( t  =  <. x ,  k >.  /\  (
x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  k  e.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  <->  E. x E. y ( t  =  <. x ,  y >.  /\  (
x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  y  e.  ( 0 ... N )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) ) ) )
379 eliunxp 5259 . . . . . . . . 9  |-  ( t  e.  U_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  <->  E. x E. k ( t  = 
<. x ,  k >.  /\  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  k  e. 
{ y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) ) )
380 elopab 4983 . . . . . . . . 9  |-  ( t  e.  { <. x ,  y >.  |  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  y  e.  ( 0 ... N )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) ) }  <->  E. x E. y ( t  = 
<. x ,  y >.  /\  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) ) )
381378, 379, 3803bitr4i 292 . . . . . . . 8  |-  ( t  e.  U_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  <->  t  e.  {
<. x ,  y >.  |  ( x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) } )
382381eqriv 2619 . . . . . . 7  |-  U_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  =  { <. x ,  y
>.  |  ( x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  y  e.  ( 0 ... N
)  /\  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) }
383 vex 3203 . . . . . . . . . . . . . 14  |-  y  e. 
_V
384125, 383op2ndd 7179 . . . . . . . . . . . . 13  |-  ( t  =  <. x ,  y
>.  ->  ( 2nd `  t
)  =  y )
385384sneqd 4189 . . . . . . . . . . . 12  |-  ( t  =  <. x ,  y
>.  ->  { ( 2nd `  t ) }  =  { y } )
386385difeq2d 3728 . . . . . . . . . . 11  |-  ( t  =  <. x ,  y
>.  ->  ( ( 0 ... N )  \  { ( 2nd `  t
) } )  =  ( ( 0 ... N )  \  {
y } ) )
387125, 383op1std 7178 . . . . . . . . . . . . 13  |-  ( t  =  <. x ,  y
>.  ->  ( 1st `  t
)  =  x )
388387csbeq1d 3540 . . . . . . . . . . . 12  |-  ( t  =  <. x ,  y
>.  ->  [_ ( 1st `  t
)  /  s ]_ C  =  [_ x  / 
s ]_ C )
389388eqeq2d 2632 . . . . . . . . . . 11  |-  ( t  =  <. x ,  y
>.  ->  ( i  = 
[_ ( 1st `  t
)  /  s ]_ C 
<->  i  =  [_ x  /  s ]_ C
) )
390386, 389rexeqbidv 3153 . . . . . . . . . 10  |-  ( t  =  <. x ,  y
>.  ->  ( E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C ) )
391390ralbidv 2986 . . . . . . . . 9  |-  ( t  =  <. x ,  y
>.  ->  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C ) )
392388neeq2d 2854 . . . . . . . . . 10  |-  ( t  =  <. x ,  y
>.  ->  ( N  =/=  [_ ( 1st `  t
)  /  s ]_ C 
<->  N  =/=  [_ x  /  s ]_ C
) )
393392ralbidv 2986 . . . . . . . . 9  |-  ( t  =  <. x ,  y
>.  ->  ( A. j  e.  ( 0 ... N
) N  =/=  [_ ( 1st `  t )  /  s ]_ C  <->  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) )
394391, 393anbi12d 747 . . . . . . . 8  |-  ( t  =  <. x ,  y
>.  ->  ( ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ ( 1st `  t
)  /  s ]_ C )  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) ) )
395394rabxp 5154 . . . . . . 7  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ ( 1st `  t )  / 
s ]_ C ) }  =  { <. x ,  y >.  |  ( x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  y  e.  ( 0 ... N )  /\  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) ) }
396382, 395eqtr4i 2647 . . . . . 6  |-  U_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ ( 1st `  t )  /  s ]_ C
) }
397 difrab 3901 . . . . . 6  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C  /\  -.  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) ) }
398360, 396, 3973eqtr4g 2681 . . . . 5  |-  ( ph  ->  U_ x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  =  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C }  \  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )
399398fveq2d 6195 . . . 4  |-  ( ph  ->  ( # `  U_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  =  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) ) )
40024a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  ->  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  e.  Fin )
401 inxp 5254 . . . . . . . . . 10  |-  ( ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  i^i  ( { t }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ t  /  s ]_ C
) } ) )  =  ( ( { x }  i^i  {
t } )  X.  ( { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) }  i^i  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ t  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C ) } ) )
402 df-ne 2795 . . . . . . . . . . . . 13  |-  ( x  =/=  t  <->  -.  x  =  t )
403 disjsn2 4247 . . . . . . . . . . . . 13  |-  ( x  =/=  t  ->  ( { x }  i^i  { t } )  =  (/) )
404402, 403sylbir 225 . . . . . . . . . . . 12  |-  ( -.  x  =  t  -> 
( { x }  i^i  { t } )  =  (/) )
405404xpeq1d 5138 . . . . . . . . . . 11  |-  ( -.  x  =  t  -> 
( ( { x }  i^i  { t } )  X.  ( { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) }  i^i  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ t  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C ) } ) )  =  ( (/)  X.  ( { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) }  i^i  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ t  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C ) } ) ) )
406 0xp 5199 . . . . . . . . . . 11  |-  ( (/)  X.  ( { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) }  i^i  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ t  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C ) } ) )  =  (/)
407405, 406syl6eq 2672 . . . . . . . . . 10  |-  ( -.  x  =  t  -> 
( ( { x }  i^i  { t } )  X.  ( { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) }  i^i  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ t  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C ) } ) )  =  (/) )
408401, 407syl5eq 2668 . . . . . . . . 9  |-  ( -.  x  =  t  -> 
( ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  i^i  ( { t }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C
) } ) )  =  (/) )
409408orri 391 . . . . . . . 8  |-  ( x  =  t  \/  (
( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  i^i  ( { t }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ t  /  s ]_ C
) } ) )  =  (/) )
410409rgen2w 2925 . . . . . . 7  |-  A. x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x  =  t  \/  ( ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  i^i  ( { t }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ t  /  s ]_ C
) } ) )  =  (/) )
411 sneq 4187 . . . . . . . . 9  |-  ( x  =  t  ->  { x }  =  { t } )
412 csbeq1 3536 . . . . . . . . . . . . . 14  |-  ( x  =  t  ->  [_ x  /  s ]_ C  =  [_ t  /  s ]_ C )
413412eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( x  =  t  ->  (
i  =  [_ x  /  s ]_ C  <->  i  =  [_ t  / 
s ]_ C ) )
414413rexbidv 3052 . . . . . . . . . . . 12  |-  ( x  =  t  ->  ( E. j  e.  (
( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  <->  E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ t  /  s ]_ C ) )
415414ralbidv 2986 . . . . . . . . . . 11  |-  ( x  =  t  ->  ( A. i  e.  (
0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  <->  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ t  /  s ]_ C
) )
416412neeq2d 2854 . . . . . . . . . . . 12  |-  ( x  =  t  ->  ( N  =/=  [_ x  /  s ]_ C  <->  N  =/=  [_ t  /  s ]_ C
) )
417416ralbidv 2986 . . . . . . . . . . 11  |-  ( x  =  t  ->  ( A. j  e.  (
0 ... N ) N  =/=  [_ x  /  s ]_ C  <->  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C
) )
418415, 417anbi12d 747 . . . . . . . . . 10  |-  ( x  =  t  ->  (
( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C )  <->  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C
) ) )
419418rabbidv 3189 . . . . . . . . 9  |-  ( x  =  t  ->  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ x  /  s ]_ C
) }  =  {
y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ t  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ t  /  s ]_ C ) } )
420411, 419xpeq12d 5140 . . . . . . . 8  |-  ( x  =  t  ->  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  =  ( { t }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ t  /  s ]_ C
) } ) )
421420disjor 4634 . . . . . . 7  |-  (Disj  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )  <->  A. x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x  =  t  \/  ( ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } )  i^i  ( { t }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N
)  \  { y } ) i  = 
[_ t  /  s ]_ C  /\  A. j  e.  ( 0 ... N
) N  =/=  [_ t  /  s ]_ C
) } ) )  =  (/) ) )
422410, 421mpbir 221 . . . . . 6  |- Disj  x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } )
423422a1i 11 . . . . 5  |-  ( ph  -> Disj  x  e.  ( (
( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )
42416, 400, 423hashiun 14554 . . . 4  |-  ( ph  ->  ( # `  U_ x  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x }  X.  { y  e.  ( 0 ... N
)  |  ( A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { y } ) i  =  [_ x  /  s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C
) } ) )  =  sum_ x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) ) )
425399, 424eqtr3d 2658 . . 3  |-  ( ph  ->  ( # `  ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C }  \  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  =  sum_ x  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) ) )
426 fo1st 7188 . . . . . . . . . . . 12  |-  1st : _V -onto-> _V
427 fofun 6116 . . . . . . . . . . . 12  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
428426, 427ax-mp 5 . . . . . . . . . . 11  |-  Fun  1st
429 ssv 3625 . . . . . . . . . . . 12  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  _V
430 fof 6115 . . . . . . . . . . . . . 14  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
431426, 430ax-mp 5 . . . . . . . . . . . . 13  |-  1st : _V
--> _V
432431fdmi 6052 . . . . . . . . . . . 12  |-  dom  1st  =  _V
433429, 432sseqtr4i 3638 . . . . . . . . . . 11  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  dom  1st
434 fores 6124 . . . . . . . . . . 11  |-  ( ( Fun  1st  /\  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  dom  1st )  ->  ( 1st  |` 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )
435428, 433, 434mp2an 708 . . . . . . . . . 10  |-  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )
436 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  ( 2nd `  t )  =  ( 2nd `  x
) )
437436csbeq1d 3540 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C )
438 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  x  ->  ( 1st `  t )  =  ( 1st `  x
) )
439438csbeq1d 3540 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  [_ ( 1st `  t )  / 
s ]_ C  =  [_ ( 1st `  x )  /  s ]_ C
)
440439csbeq2dv 3992 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C )
441437, 440eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( t  =  x  ->  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C )
442441eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( t  =  x  ->  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C 
<->  N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C ) )
443439eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  (
i  =  [_ ( 1st `  t )  / 
s ]_ C  <->  i  =  [_ ( 1st `  x
)  /  s ]_ C ) )
444443rexbidv 3052 . . . . . . . . . . . . . . . . 17  |-  ( t  =  x  ->  ( E. j  e.  (
0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  / 
s ]_ C ) )
445444ralbidv 2986 . . . . . . . . . . . . . . . 16  |-  ( t  =  x  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C  <->  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  / 
s ]_ C ) )
446442, 445anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( t  =  x  ->  (
( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C )  <->  ( N  =  [_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) ) )
447446rexrab 3370 . . . . . . . . . . . . . 14  |-  ( E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s  <->  E. x  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s ) )
448 xp1st 7198 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  x )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
449448anim1i 592 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  ->  ( ( 1st `  x )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )
450 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x )  =  s  ->  (
( 1st `  x
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  <->  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) )
451 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( s  =  ( 1st `  x
)  ->  C  =  [_ ( 1st `  x
)  /  s ]_ C )
452451eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  x )  =  s  ->  C  =  [_ ( 1st `  x
)  /  s ]_ C )
453452eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1st `  x )  =  s  ->  [_ ( 1st `  x )  / 
s ]_ C  =  C )
454453eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  x )  =  s  ->  (
i  =  [_ ( 1st `  x )  / 
s ]_ C  <->  i  =  C ) )
455454rexbidv 3052 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x )  =  s  ->  ( E. j  e.  (
0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  E. j  e.  ( 0 ... N ) i  =  C ) )
456455ralbidv 2986 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x )  =  s  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C ) )
457450, 456anbi12d 747 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  x )  =  s  ->  (
( ( 1st `  x
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C )  <->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
458449, 457syl5ibcom 235 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  ->  ( ( 1st `  x )  =  s  ->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
459458adantrl 752 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  ->  (
( 1st `  x
)  =  s  -> 
( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
460459expimpd 629 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s )  ->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
461460rexlimiv 3027 . . . . . . . . . . . . . . 15  |-  ( E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s )  ->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) )
462 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C )  -> 
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
463 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0 ... N )  e. 
_V
464463enref 7988 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0 ... N )  ~~  ( 0 ... N
)
465 phpreu 33393 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 0 ... N
)  e.  Fin  /\  ( 0 ... N
)  ~~  ( 0 ... N ) )  ->  ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C  <->  A. i  e.  (
0 ... N ) E! j  e.  ( 0 ... N ) i  =  C ) )
46620, 464, 465mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C  <->  A. i  e.  ( 0 ... N
) E! j  e.  ( 0 ... N
) i  =  C )
467466biimpi 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C  ->  A. i  e.  ( 0 ... N
) E! j  e.  ( 0 ... N
) i  =  C )
468 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  N  ->  (
i  =  C  <->  N  =  C ) )
469468reubidv 3126 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  N  ->  ( E! j  e.  (
0 ... N ) i  =  C  <->  E! j  e.  ( 0 ... N
) N  =  C ) )
470469rspcva 3307 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ( 0 ... N )  /\  A. i  e.  ( 0 ... N ) E! j  e.  ( 0 ... N ) i  =  C )  ->  E! j  e.  (
0 ... N ) N  =  C )
471232, 467, 470syl2an 494 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  ->  E! j  e.  ( 0 ... N
) N  =  C )
472 riotacl 6625 . . . . . . . . . . . . . . . . . . . 20  |-  ( E! j  e.  ( 0 ... N ) N  =  C  ->  ( iota_ j  e.  ( 0 ... N ) N  =  C )  e.  ( 0 ... N
) )
473471, 472syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  ->  ( iota_ j  e.  ( 0 ... N ) N  =  C )  e.  ( 0 ... N ) )
474473adantlr 751 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C )  -> 
( iota_ j  e.  ( 0 ... N ) N  =  C )  e.  ( 0 ... N ) )
475 opelxpi 5148 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( iota_ j  e.  ( 0 ... N ) N  =  C )  e.  ( 0 ... N ) )  ->  <. s ,  ( iota_ j  e.  ( 0 ... N ) N  =  C ) >.  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
476462, 474, 475syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C )  ->  <. s ,  ( iota_ j  e.  ( 0 ... N ) N  =  C ) >.  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
477 riotasbc 6626 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E! j  e.  ( 0 ... N ) N  =  C  ->  [. ( iota_ j  e.  ( 0 ... N ) N  =  C )  / 
j ]. N  =  C )
478471, 477syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  ->  [. ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]. N  =  C
)
479 riotaex 6615 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( iota_ j  e.  ( 0 ... N ) N  =  C )  e.  _V
480 sbceq2g 3990 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
iota_ j  e.  (
0 ... N ) N  =  C )  e. 
_V  ->  ( [. ( iota_ j  e.  ( 0 ... N ) N  =  C )  / 
j ]. N  =  C  <-> 
N  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  / 
j ]_ C ) )
481479, 480ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( [. ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]. N  =  C  <->  N  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  / 
j ]_ C )
482478, 481sylib 208 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  ->  N  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]_ C
)
483482expcom 451 . . . . . . . . . . . . . . . . . . 19  |-  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C  ->  ( ph  ->  N  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]_ C
) )
484483imdistanri 727 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  ->  ( N  =  [_ ( iota_ j  e.  ( 0 ... N
) N  =  C )  /  j ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) )
485484adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C )  -> 
( N  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]_ C  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C ) )
486 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  s  e. 
_V
487486, 479op2ndd 7179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( 2nd `  x
)  =  ( iota_ j  e.  ( 0 ... N ) N  =  C ) )
488487csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  [_ ( 2nd `  x
)  /  j ]_ C  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]_ C )
489 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  F/_ j
s
490 nfriota1 6618 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  F/_ j
( iota_ j  e.  ( 0 ... N ) N  =  C )
491489, 490nfop 4418 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ j <. s ,  ( iota_ j  e.  ( 0 ... N ) N  =  C ) >.
492491nfeq2 2780 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ j  x  =  <. s ,  ( iota_ j  e.  ( 0 ... N
) N  =  C ) >.
493486, 479op1std 7178 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( 1st `  x
)  =  s )
494493eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  s  =  ( 1st `  x ) )
495494, 451syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  C  =  [_ ( 1st `  x )  / 
s ]_ C )
496492, 495csbeq2d 3991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  [_ ( 2nd `  x
)  /  j ]_ C  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )
497488, 496eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  [_ ( iota_ j  e.  ( 0 ... N
) N  =  C )  /  j ]_ C  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )
498497eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( N  =  [_ ( iota_ j  e.  ( 0 ... N ) N  =  C )  /  j ]_ C  <->  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) )
499495eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( i  =  C  <-> 
i  =  [_ ( 1st `  x )  / 
s ]_ C ) )
500492, 499rexbid 3051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( E. j  e.  ( 0 ... N
) i  =  C  <->  E. j  e.  (
0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C ) )
501500ralbidv 2986 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C  <->  A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C ) )
502498, 501anbi12d 747 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( ( N  = 
[_ ( iota_ j  e.  ( 0 ... N
) N  =  C )  /  j ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  <->  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) ) )
503493biantrud 528 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  <->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s ) ) )
504502, 503bitr2d 269 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. s ,  (
iota_ j  e.  (
0 ... N ) N  =  C ) >.  ->  ( ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s )  <->  ( N  = 
[_ ( iota_ j  e.  ( 0 ... N
) N  =  C )  /  j ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
505504rspcev 3309 . . . . . . . . . . . . . . . . 17  |-  ( (
<. s ,  ( iota_ j  e.  ( 0 ... N ) N  =  C ) >.  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( N  = 
[_ ( iota_ j  e.  ( 0 ... N
) N  =  C )  /  j ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) )  ->  E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) ( ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s ) )
506476, 485, 505syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C )  ->  E. x  e.  (
( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) ( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s ) )
507506expl 648 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )  ->  E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) ( ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s ) ) )
508461, 507impbid2 216 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( E. x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) ( ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  /\  ( 1st `  x )  =  s )  <->  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
509447, 508syl5bb 272 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. x  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s  <-> 
( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) ) )
510509abbidv 2741 . . . . . . . . . . . 12  |-  ( ph  ->  { s  |  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s }  =  { s  |  ( s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C ) } )
511 dfimafn 6245 . . . . . . . . . . . . . 14  |-  ( ( Fun  1st  /\  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  dom  1st )  ->  ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  { y  |  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  y } )
512428, 433, 511mp2an 708 . . . . . . . . . . . . 13  |-  ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  { y  |  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  y }
513 nfcv 2764 . . . . . . . . . . . . . . . . . . 19  |-  F/_ s
( 2nd `  t
)
514 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . 19  |-  F/_ s [_ ( 1st `  t
)  /  s ]_ C
515513, 514nfcsb 3551 . . . . . . . . . . . . . . . . . 18  |-  F/_ s [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C
516515nfeq2 2780 . . . . . . . . . . . . . . . . 17  |-  F/ s  N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C
517 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ s
( 0 ... N
)
518514nfeq2 2780 . . . . . . . . . . . . . . . . . . 19  |-  F/ s  i  =  [_ ( 1st `  t )  / 
s ]_ C
519517, 518nfrex 3007 . . . . . . . . . . . . . . . . . 18  |-  F/ s E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C
520517, 519nfral 2945 . . . . . . . . . . . . . . . . 17  |-  F/ s A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  / 
s ]_ C
521516, 520nfan 1828 . . . . . . . . . . . . . . . 16  |-  F/ s ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C )
522 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ s
( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )
523521, 522nfrab 3123 . . . . . . . . . . . . . . 15  |-  F/_ s { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }
524 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ s ( 1st `  x
)  =  y
525523, 524nfrex 3007 . . . . . . . . . . . . . 14  |-  F/ s E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  y
526 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ y E. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s
527 eqeq2 2633 . . . . . . . . . . . . . . 15  |-  ( y  =  s  ->  (
( 1st `  x
)  =  y  <->  ( 1st `  x )  =  s ) )
528527rexbidv 3052 . . . . . . . . . . . . . 14  |-  ( y  =  s  ->  ( E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  y  <->  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s ) )
529525, 526, 528cbvab 2746 . . . . . . . . . . . . 13  |-  { y  |  E. x  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  y }  =  { s  |  E. x  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s }
530512, 529eqtri 2644 . . . . . . . . . . . 12  |-  ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  { s  |  E. x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( 1st `  x )  =  s }
531 df-rab 2921 . . . . . . . . . . . 12  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  =  { s  |  ( s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C ) }
532510, 530, 5313eqtr4g 2681 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st " {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C } )
533 foeq3 6113 . . . . . . . . . . 11  |-  ( ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  <->  ( 1st  |` 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
534532, 533syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> ( 1st " { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  <->  ( 1st  |` 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
535435, 534mpbii 223 . . . . . . . . 9  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
536 fof 6115 . . . . . . . . 9  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
537535, 536syl 17 . . . . . . . 8  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
538 fvres 6207 . . . . . . . . . . . 12  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  (
( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  x )  =  ( 1st `  x ) )
539 fvres 6207 . . . . . . . . . . . 12  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  (
( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  y )  =  ( 1st `  y ) )
540538, 539eqeqan12d 2638 . . . . . . . . . . 11  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  -> 
( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  y )  <->  ( 1st `  x )  =  ( 1st `  y ) ) )
541540adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  ->  ( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  y )  <->  ( 1st `  x )  =  ( 1st `  y ) ) )
542446elrab 3363 . . . . . . . . . . . . . . 15  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  <->  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) ) )
543 xp2nd 7199 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  x )  e.  ( 0 ... N
) )
544543anim1i 592 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  ->  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) ) )
545542, 544sylbi 207 . . . . . . . . . . . . . 14  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) ) )
546 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
)  ->  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C )
547546a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  t )  /  s ]_ C )  ->  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C ) )
548547ss2rabi 3684 . . . . . . . . . . . . . . . 16  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  C_  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C }
549548sseli 3599 . . . . . . . . . . . . . . 15  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t )  / 
s ]_ C } )
550 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  y  ->  ( 2nd `  t )  =  ( 2nd `  y
) )
551550csbeq1d 3540 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  y  ->  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C )
552 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  y  ->  ( 1st `  t )  =  ( 1st `  y
) )
553552csbeq1d 3540 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  y  ->  [_ ( 1st `  t )  / 
s ]_ C  =  [_ ( 1st `  y )  /  s ]_ C
)
554553csbeq2dv 3992 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  y  ->  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  s ]_ C )
555551, 554eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  y  ->  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  s ]_ C )
556555eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( t  =  y  ->  ( N  =  [_ ( 2nd `  t )  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C 
<->  N  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  s ]_ C ) )
557556elrab 3363 . . . . . . . . . . . . . . . 16  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C }  <->  ( y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  N  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )
558 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  y )  e.  ( 0 ... N
) )
559558anim1i 592 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C )  -> 
( ( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )
560557, 559sylbi 207 . . . . . . . . . . . . . . 15  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  N  =  [_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C }  ->  ( ( 2nd `  y )  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )
561549, 560syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )
562545, 561anim12i 590 . . . . . . . . . . . . 13  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  -> 
( ( ( 2nd `  x )  e.  ( 0 ... N )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) ) )
563 an4 865 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )  <->  ( (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  N  = 
[_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) ) )
564563anbi2i 730 . . . . . . . . . . . . . 14  |-  ( ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  / 
s ]_ C  /\  (
( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) ) )  <-> 
( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( ( 2nd `  x )  e.  ( 0 ... N )  /\  ( 2nd `  y
)  e.  ( 0 ... N ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) ) ) )
565 anass 681 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C )  <->  ( ( 2nd `  x )  e.  ( 0 ... N
)  /\  ( N  =  [_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) ) )
566 ancom 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C )  <->  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) ) )
567565, 566bitr3i 266 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  <->  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) ) )
568567anbi1i 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )  <->  ( ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) )  /\  ( ( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) ) )
569 anass 681 . . . . . . . . . . . . . . 15  |-  ( ( ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) )  /\  ( ( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )  <->  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) ) ) )
570568, 569bitri 264 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )  <->  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( ( 2nd `  x
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) ) ) )
571 anass 681 . . . . . . . . . . . . . 14  |-  ( ( ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) )  <-> 
( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( ( 2nd `  x )  e.  ( 0 ... N )  /\  ( 2nd `  y
)  e.  ( 0 ... N ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) ) ) )
572564, 570, 5713bitr4i 292 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
) )  /\  (
( 2nd `  y
)  e.  ( 0 ... N )  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C ) )  <->  ( ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) ) )
573562, 572sylib 208 . . . . . . . . . . . 12  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  -> 
( ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) ) )
574 phpreu 33393 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 0 ... N
)  e.  Fin  /\  ( 0 ... N
)  ~~  ( 0 ... N ) )  ->  ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  A. i  e.  ( 0 ... N ) E! j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C ) )
57520, 464, 574mp2an 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  A. i  e.  ( 0 ... N ) E! j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  / 
s ]_ C )
576 reurmo 3161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E! j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  ->  E* j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)
577576ralimi 2952 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. i  e.  ( 0 ... N ) E! j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  ->  A. i  e.  ( 0 ... N
) E* j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)
578575, 577sylbi 207 . . . . . . . . . . . . . . . . . . 19  |-  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  ->  A. i  e.  ( 0 ... N
) E* j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)
579 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  N  ->  (
i  =  [_ ( 1st `  x )  / 
s ]_ C  <->  N  =  [_ ( 1st `  x
)  /  s ]_ C ) )
580579rmobidv 3131 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  N  ->  ( E* j  e.  (
0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  <->  E* j  e.  ( 0 ... N ) N  =  [_ ( 1st `  x )  / 
s ]_ C ) )
581580rspcva 3307 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( 0 ... N )  /\  A. i  e.  ( 0 ... N ) E* j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C )  ->  E* j  e.  ( 0 ... N ) N  =  [_ ( 1st `  x )  /  s ]_ C )
582232, 578, 581syl2an 494 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  ->  E* j  e.  ( 0 ... N
) N  =  [_ ( 1st `  x )  /  s ]_ C
)
583 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ k  N  =  [_ ( 1st `  x )  / 
s ]_ C
584583rmo3 3528 . . . . . . . . . . . . . . . . . 18  |-  ( E* j  e.  ( 0 ... N ) N  =  [_ ( 1st `  x )  /  s ]_ C  <->  A. j  e.  ( 0 ... N ) A. k  e.  ( 0 ... N ) ( ( N  = 
[_ ( 1st `  x
)  /  s ]_ C  /\  [ k  / 
j ] N  = 
[_ ( 1st `  x
)  /  s ]_ C )  ->  j  =  k ) )
585582, 584sylib 208 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  ->  A. j  e.  ( 0 ... N
) A. k  e.  ( 0 ... N
) ( ( N  =  [_ ( 1st `  x )  /  s ]_ C  /\  [ k  /  j ] N  =  [_ ( 1st `  x
)  /  s ]_ C )  ->  j  =  k ) )
586 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ j [_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C
587586nfeq2 2780 . . . . . . . . . . . . . . . . . . . 20  |-  F/ j  N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C
588 nfs1v 2437 . . . . . . . . . . . . . . . . . . . 20  |-  F/ j [ k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C
589587, 588nfan 1828 . . . . . . . . . . . . . . . . . . 19  |-  F/ j ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C  /\  [
k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C )
590 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ j ( 2nd `  x
)  =  k
591589, 590nfim 1825 . . . . . . . . . . . . . . . . . 18  |-  F/ j ( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  [ k  / 
j ] N  = 
[_ ( 1st `  x
)  /  s ]_ C )  ->  ( 2nd `  x )  =  k )
592 nfv 1843 . . . . . . . . . . . . . . . . . 18  |-  F/ k ( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) )
593 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  ( 2nd `  x
)  ->  [_ ( 1st `  x )  /  s ]_ C  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C )
594593eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  ( 2nd `  x
)  ->  ( N  =  [_ ( 1st `  x
)  /  s ]_ C 
<->  N  =  [_ ( 2nd `  x )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C ) )
595594anbi1d 741 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( 2nd `  x
)  ->  ( ( N  =  [_ ( 1st `  x )  /  s ]_ C  /\  [ k  /  j ] N  =  [_ ( 1st `  x
)  /  s ]_ C )  <->  ( N  =  [_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  [ k  / 
j ] N  = 
[_ ( 1st `  x
)  /  s ]_ C ) ) )
596 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( 2nd `  x
)  ->  ( j  =  k  <->  ( 2nd `  x
)  =  k ) )
597595, 596imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( 2nd `  x
)  ->  ( (
( N  =  [_ ( 1st `  x )  /  s ]_ C  /\  [ k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C )  -> 
j  =  k )  <-> 
( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  [ k  / 
j ] N  = 
[_ ( 1st `  x
)  /  s ]_ C )  ->  ( 2nd `  x )  =  k ) ) )
598 sbsbc 3439 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( [ k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C  <->  [. k  / 
j ]. N  =  [_ ( 1st `  x )  /  s ]_ C
)
599 vex 3203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  k  e. 
_V
600 sbceq2g 3990 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  _V  ->  ( [. k  /  j ]. N  =  [_ ( 1st `  x )  / 
s ]_ C  <->  N  =  [_ k  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) )
601599, 600ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( [. k  /  j ]. N  =  [_ ( 1st `  x
)  /  s ]_ C 
<->  N  =  [_ k  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )
602598, 601bitri 264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( [ k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C  <->  N  =  [_ k  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )
603 csbeq1 3536 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  ( 2nd `  y
)  ->  [_ k  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C )
604603eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  ( 2nd `  y
)  ->  ( N  =  [_ k  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C 
<->  N  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  x )  /  s ]_ C ) )
605602, 604syl5bb 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  ( 2nd `  y
)  ->  ( [
k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C  <->  N  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C ) )
606605anbi2d 740 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( 2nd `  y
)  ->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  [ k  / 
j ] N  = 
[_ ( 1st `  x
)  /  s ]_ C )  <->  ( N  =  [_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C ) ) )
607 eqeq2 2633 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( 2nd `  y
)  ->  ( ( 2nd `  x )  =  k  <->  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
608606, 607imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( 2nd `  y
)  ->  ( (
( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C  /\  [
k  /  j ] N  =  [_ ( 1st `  x )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  k )  <-> 
( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) ) ) )
609591, 592, 597, 608rspc2 3320 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) )  -> 
( A. j  e.  ( 0 ... N
) A. k  e.  ( 0 ... N
) ( ( N  =  [_ ( 1st `  x )  /  s ]_ C  /\  [ k  /  j ] N  =  [_ ( 1st `  x
)  /  s ]_ C )  ->  j  =  k )  -> 
( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) ) ) )
610585, 609syl5com 31 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  x )  /  s ]_ C
)  ->  ( (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) )  -> 
( ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) ) ) )
611610impr 649 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) ) )  ->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) ) )
612 csbeq1 3536 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  x )  =  ( 1st `  y
)  ->  [_ ( 1st `  x )  /  s ]_ C  =  [_ ( 1st `  y )  / 
s ]_ C )
613612csbeq2dv 3992 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  x )  =  ( 1st `  y
)  ->  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  s ]_ C )
614613eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  x )  =  ( 1st `  y
)  ->  ( N  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C 
<->  N  =  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  s ]_ C ) )
615614anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  x )  =  ( 1st `  y
)  ->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C )  <->  ( N  =  [_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) ) )
616615imbi1d 331 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  x )  =  ( 1st `  y
)  ->  ( (
( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x )  / 
s ]_ C  /\  N  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C )  ->  ( 2nd `  x )  =  ( 2nd `  y
) )  <->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) ) ) )
617611, 616syl5ibcom 235 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y
)  ->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C )  -> 
( 2nd `  x
)  =  ( 2nd `  y ) ) ) )
618617com23 86 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) ) )  ->  ( ( N  =  [_ ( 2nd `  x )  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C )  -> 
( ( 1st `  x
)  =  ( 1st `  y )  ->  ( 2nd `  x )  =  ( 2nd `  y
) ) ) )
619618impr 649 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ ( 1st `  x )  /  s ]_ C  /\  (
( 2nd `  x
)  e.  ( 0 ... N )  /\  ( 2nd `  y )  e.  ( 0 ... N ) ) )  /\  ( N  = 
[_ ( 2nd `  x
)  /  j ]_ [_ ( 1st `  x
)  /  s ]_ C  /\  N  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
s ]_ C ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y
)  ->  ( 2nd `  x )  =  ( 2nd `  y ) ) )
620573, 619sylan2 491 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  ->  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
621 elrabi 3359 . . . . . . . . . . . . 13  |-  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
622 elrabi 3359 . . . . . . . . . . . . 13  |-  ( y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ->  y  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
623 xpopth 7207 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) )  <->  x  =  y ) )
624623biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) )  ->  x  =  y ) )
625624expd 452 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  y  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y
)  ->  ( ( 2nd `  x )  =  ( 2nd `  y
)  ->  x  =  y ) ) )
626621, 622, 625syl2an 494 . . . . . . . . . . . 12  |-  ( ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  -> 
( ( 1st `  x
)  =  ( 1st `  y )  ->  (
( 2nd `  x
)  =  ( 2nd `  y )  ->  x  =  y ) ) )
627626adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  ->  ( ( 2nd `  x )  =  ( 2nd `  y )  ->  x  =  y ) ) )
628620, 627mpdd 43 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  ->  x  =  y ) )
629541, 628sylbid 230 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  /\  y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  ->  ( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  y )  ->  x  =  y ) )
630629ralrimivva 2971 . . . . . . . 8  |-  ( ph  ->  A. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } A. y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  y )  ->  x  =  y ) )
631 dff13 6512 . . . . . . . 8  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -1-1-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  <->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } --> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  /\  A. x  e.  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } A. y  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ( ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  x )  =  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) `  y )  ->  x  =  y ) ) )
632537, 630, 631sylanbrc 698 . . . . . . 7  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -1-1-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
633 df-f1o 5895 . . . . . . 7  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  <->  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -1-1-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  /\  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
634632, 535, 633sylanbrc 698 . . . . . 6  |-  ( ph  ->  ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C } )
635 rabfi 8185 . . . . . . . . 9  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  e.  Fin )
636138, 635ax-mp 5 . . . . . . . 8  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  e.  Fin
637636elexi 3213 . . . . . . 7  |-  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  e.  _V
638637f1oen 7976 . . . . . 6  |-  ( ( 1st  |`  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) : { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } -1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ~~  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
639634, 638syl 17 . . . . 5  |-  ( ph  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ~~  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
640 rabfi 8185 . . . . . . 7  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  e.  Fin  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  e.  Fin )
641136, 640ax-mp 5 . . . . . 6  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  e.  Fin
642 hashen 13135 . . . . . 6  |-  ( ( { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  e.  Fin  /\ 
{ s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  e.  Fin )  ->  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)  <->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ~~  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
643636, 641, 642mp2an 708 . . . . 5  |-  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)  <->  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) }  ~~  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)
644639, 643sylibr 224 . . . 4  |-  ( ph  ->  ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  ( N  = 
[_ ( 2nd `  t
)  /  j ]_ [_ ( 1st `  t
)  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
645644oveq2d 6666 . . 3  |-  ( ph  ->  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )  -  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  ( N  =  [_ ( 2nd `  t )  / 
j ]_ [_ ( 1st `  t )  /  s ]_ C  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( 1st `  t )  /  s ]_ C
) } ) )  =  ( ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ C } )  -  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) ) )
646202, 425, 6453eqtr3d 2664 . 2  |-  ( ph  -> 
sum_ x  e.  (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # `  ( { x }  X.  { y  e.  ( 0 ... N )  |  ( A. i  e.  ( 0 ... ( N  -  1 ) ) E. j  e.  ( ( 0 ... N )  \  {
y } ) i  =  [_ x  / 
s ]_ C  /\  A. j  e.  ( 0 ... N ) N  =/=  [_ x  /  s ]_ C ) } ) )  =  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) ) )
647135, 646breqtrd 4679 1  |-  ( ph  ->  2  ||  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  A. i  e.  ( 0 ... ( N  - 
1 ) ) E. j  e.  ( ( 0 ... N ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ C } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   [wsb 1880    e. wcel 1990   {cab 2608    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   E!wreu 2914   E*wrmo 2915   {crab 2916   _Vcvv 3200   [.wsbc 3435   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   iota_crio 6610  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117   sum_csu 14416    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984
This theorem is referenced by:  poimirlem28  33437
  Copyright terms: Public domain W3C validator