![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpt2x | Structured version Visualization version Unicode version |
Description: Rule to change the bound
variable in a maps-to function, using implicit
substitution. This version of cbvmpt2 6734 allows ![]() ![]() |
Ref | Expression |
---|---|
cbvmpt2x.1 |
![]() ![]() ![]() ![]() |
cbvmpt2x.2 |
![]() ![]() ![]() ![]() |
cbvmpt2x.3 |
![]() ![]() ![]() ![]() |
cbvmpt2x.4 |
![]() ![]() ![]() ![]() |
cbvmpt2x.5 |
![]() ![]() ![]() ![]() |
cbvmpt2x.6 |
![]() ![]() ![]() ![]() |
cbvmpt2x.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cbvmpt2x.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmpt2x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1843 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cbvmpt2x.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2758 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfan 1828 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cbvmpt2x.3 |
. . . . 5
![]() ![]() ![]() ![]() | |
6 | 5 | nfeq2 2780 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | nfan 1828 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | nfv 1843 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | nfcv 2764 |
. . . . . 6
![]() ![]() ![]() ![]() | |
10 | 9 | nfcri 2758 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | nfan 1828 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cbvmpt2x.4 |
. . . . 5
![]() ![]() ![]() ![]() | |
13 | 12 | nfeq2 2780 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | nfan 1828 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | nfv 1843 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | cbvmpt2x.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
17 | 16 | nfcri 2758 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | nfan 1828 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | cbvmpt2x.5 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 19 | nfeq2 2780 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 18, 20 | nfan 1828 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | nfv 1843 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | cbvmpt2x.6 |
. . . . 5
![]() ![]() ![]() ![]() | |
24 | 23 | nfeq2 2780 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | nfan 1828 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | eleq1 2689 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | cbvmpt2x.7 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 28 | eleq2d 2687 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | eleq1 2689 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 29, 30 | sylan9bb 736 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 27, 31 | anbi12d 747 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | cbvmpt2x.8 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 33 | eqeq2d 2632 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 32, 34 | anbi12d 747 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 7, 14, 21, 25, 35 | cbvoprab12 6729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | df-mpt2 6655 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | df-mpt2 6655 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 36, 37, 38 | 3eqtr4i 2654 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-oprab 6654 df-mpt2 6655 |
This theorem is referenced by: cbvmpt2 6734 mpt2mptsx 7233 dmmpt2ssx 7235 gsumcom2 18374 ptcmpg 21861 |
Copyright terms: Public domain | W3C validator |