MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Visualization version   Unicode version

Theorem ptcmpg 21861
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if  ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 21862). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1  |-  J  =  ( Xt_ `  F
)
ptcmpg.2  |-  X  = 
U. J
Assertion
Ref Expression
ptcmpg  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  J  e.  Comp )

Proof of Theorem ptcmpg
Dummy variables  a 
b  k  m  n  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2  |-  J  =  ( Xt_ `  F
)
2 nfcv 2764 . . . 4  |-  F/_ k
( F `  a
)
3 nfcv 2764 . . . 4  |-  F/_ a
( F `  k
)
4 nfcv 2764 . . . 4  |-  F/_ k
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )
5 nfcv 2764 . . . 4  |-  F/_ u
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )
6 nfcv 2764 . . . 4  |-  F/_ a
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u )
7 nfcv 2764 . . . 4  |-  F/_ b
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u )
8 fveq2 6191 . . . 4  |-  ( a  =  k  ->  ( F `  a )  =  ( F `  k ) )
9 fveq2 6191 . . . . . . . 8  |-  ( a  =  k  ->  (
w `  a )  =  ( w `  k ) )
109mpteq2dv 4745 . . . . . . 7  |-  ( a  =  k  ->  (
w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  a
) )  =  ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) )
1110cnveqd 5298 . . . . . 6  |-  ( a  =  k  ->  `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  a
) )  =  `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) )
1211imaeq1d 5465 . . . . 5  |-  ( a  =  k  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )  =  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
b ) )
13 imaeq2 5462 . . . . 5  |-  ( b  =  u  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
b )  =  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )
1412, 13sylan9eq 2676 . . . 4  |-  ( ( a  =  k  /\  b  =  u )  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )  =  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )
152, 3, 4, 5, 6, 7, 8, 14cbvmpt2x 6733 . . 3  |-  ( a  e.  A ,  b  e.  ( F `  a )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n ) 
|->  ( w `  a
) ) " b
) )  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n ) 
|->  ( w `  k
) ) " u
) )
16 fveq2 6191 . . . . 5  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
1716unieqd 4446 . . . 4  |-  ( n  =  m  ->  U. ( F `  n )  =  U. ( F `  m ) )
1817cbvixpv 7926 . . 3  |-  X_ n  e.  A  U. ( F `  n )  =  X_ m  e.  A  U. ( F `  m
)
19 simp1 1061 . . 3  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  A  e.  V )
20 simp2 1062 . . 3  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  F : A
--> Comp )
21 cmptop 21198 . . . . . . . 8  |-  ( k  e.  Comp  ->  k  e. 
Top )
2221ssriv 3607 . . . . . . 7  |-  Comp  C_  Top
23 fss 6056 . . . . . . 7  |-  ( ( F : A --> Comp  /\  Comp  C_ 
Top )  ->  F : A --> Top )
2420, 22, 23sylancl 694 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  F : A
--> Top )
251ptuni 21397 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ n  e.  A  U. ( F `  n
)  =  U. J
)
2619, 24, 25syl2anc 693 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X_ n  e.  A  U. ( F `
 n )  = 
U. J )
27 ptcmpg.2 . . . . 5  |-  X  = 
U. J
2826, 27syl6eqr 2674 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X_ n  e.  A  U. ( F `
 n )  =  X )
29 simp3 1063 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X  e.  (UFL  i^i  dom  card ) )
3028, 29eqeltrd 2701 . . 3  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X_ n  e.  A  U. ( F `
 n )  e.  (UFL  i^i  dom  card )
)
3115, 18, 19, 20, 30ptcmplem5 21860 . 2  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  ( Xt_ `  F )  e.  Comp )
321, 31syl5eqel 2705 1  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  J  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888    |-> cmpt2 6652   X_cixp 7908   cardccrd 8761   Xt_cpt 16099   Topctop 20698   Compccmp 21189  UFLcufl 21704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-wdom 8464  df-card 8765  df-acn 8768  df-topgen 16104  df-pt 16105  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-ufil 21705  df-ufl 21706  df-flim 21743  df-fcls 21745
This theorem is referenced by:  ptcmp  21862  dfac21  37636
  Copyright terms: Public domain W3C validator