| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvopab1 | Structured version Visualization version Unicode version | ||
| Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvopab1.1 |
|
| cbvopab1.2 |
|
| cbvopab1.3 |
|
| Ref | Expression |
|---|---|
| cbvopab1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . 5
| |
| 2 | nfv 1843 |
. . . . . . 7
| |
| 3 | nfs1v 2437 |
. . . . . . 7
| |
| 4 | 2, 3 | nfan 1828 |
. . . . . 6
|
| 5 | 4 | nfex 2154 |
. . . . 5
|
| 6 | opeq1 4402 |
. . . . . . . 8
| |
| 7 | 6 | eqeq2d 2632 |
. . . . . . 7
|
| 8 | sbequ12 2111 |
. . . . . . 7
| |
| 9 | 7, 8 | anbi12d 747 |
. . . . . 6
|
| 10 | 9 | exbidv 1850 |
. . . . 5
|
| 11 | 1, 5, 10 | cbvex 2272 |
. . . 4
|
| 12 | nfv 1843 |
. . . . . . 7
| |
| 13 | cbvopab1.1 |
. . . . . . . 8
| |
| 14 | 13 | nfsb 2440 |
. . . . . . 7
|
| 15 | 12, 14 | nfan 1828 |
. . . . . 6
|
| 16 | 15 | nfex 2154 |
. . . . 5
|
| 17 | nfv 1843 |
. . . . 5
| |
| 18 | opeq1 4402 |
. . . . . . . 8
| |
| 19 | 18 | eqeq2d 2632 |
. . . . . . 7
|
| 20 | sbequ 2376 |
. . . . . . . 8
| |
| 21 | cbvopab1.2 |
. . . . . . . . 9
| |
| 22 | cbvopab1.3 |
. . . . . . . . 9
| |
| 23 | 21, 22 | sbie 2408 |
. . . . . . . 8
|
| 24 | 20, 23 | syl6bb 276 |
. . . . . . 7
|
| 25 | 19, 24 | anbi12d 747 |
. . . . . 6
|
| 26 | 25 | exbidv 1850 |
. . . . 5
|
| 27 | 16, 17, 26 | cbvex 2272 |
. . . 4
|
| 28 | 11, 27 | bitri 264 |
. . 3
|
| 29 | 28 | abbii 2739 |
. 2
|
| 30 | df-opab 4713 |
. 2
| |
| 31 | df-opab 4713 |
. 2
| |
| 32 | 29, 30, 31 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 |
| This theorem is referenced by: cbvopab1v 4726 cbvmptf 4748 cbvmpt 4749 phpreu 33393 poimirlem26 33435 mbfposadd 33457 |
| Copyright terms: Public domain | W3C validator |