| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfposadd | Structured version Visualization version Unicode version | ||
| Description: If the sum of two measurable functions is measurable, the sum of their nonnegative parts is measurable. (Contributed by Brendan Leahy, 2-Apr-2018.) |
| Ref | Expression |
|---|---|
| mbfposadd.1 |
|
| mbfposadd.2 |
|
| mbfposadd.3 |
|
| mbfposadd.4 |
|
| mbfposadd.5 |
|
| Ref | Expression |
|---|---|
| mbfposadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfposadd.2 |
. . . . 5
| |
| 2 | 0re 10040 |
. . . . 5
| |
| 3 | ifcl 4130 |
. . . . 5
| |
| 4 | 1, 2, 3 | sylancl 694 |
. . . 4
|
| 5 | mbfposadd.4 |
. . . . 5
| |
| 6 | ifcl 4130 |
. . . . 5
| |
| 7 | 5, 2, 6 | sylancl 694 |
. . . 4
|
| 8 | 4, 7 | readdcld 10069 |
. . 3
|
| 9 | eqid 2622 |
. . 3
| |
| 10 | 8, 9 | fmptd 6385 |
. 2
|
| 11 | ssrab2 3687 |
. . . 4
| |
| 12 | fssres 6070 |
. . . 4
| |
| 13 | 10, 11, 12 | sylancl 694 |
. . 3
|
| 14 | inss2 3834 |
. . . . . 6
| |
| 15 | resabs1 5427 |
. . . . . 6
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
|
| 17 | elin 3796 |
. . . . . . . . 9
| |
| 18 | rabid 3116 |
. . . . . . . . . 10
| |
| 19 | rabid 3116 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | anbi12i 733 |
. . . . . . . . 9
|
| 21 | 17, 20 | bitri 264 |
. . . . . . . 8
|
| 22 | iftrue 4092 |
. . . . . . . . . 10
| |
| 23 | iftrue 4092 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | oveqan12d 6669 |
. . . . . . . . 9
|
| 25 | 24 | ad2ant2l 782 |
. . . . . . . 8
|
| 26 | 21, 25 | sylbi 207 |
. . . . . . 7
|
| 27 | 26 | mpteq2ia 4740 |
. . . . . 6
|
| 28 | inss1 3833 |
. . . . . . . 8
| |
| 29 | ssrab2 3687 |
. . . . . . . 8
| |
| 30 | 28, 29 | sstri 3612 |
. . . . . . 7
|
| 31 | resmpt 5449 |
. . . . . . . 8
| |
| 32 | nfcv 2764 |
. . . . . . . . . 10
| |
| 33 | nfcsb1v 3549 |
. . . . . . . . . 10
| |
| 34 | csbeq1a 3542 |
. . . . . . . . . 10
| |
| 35 | 32, 33, 34 | cbvmpt 4749 |
. . . . . . . . 9
|
| 36 | 35 | reseq1i 5392 |
. . . . . . . 8
|
| 37 | nfv 1843 |
. . . . . . . . . 10
| |
| 38 | nfrab1 3122 |
. . . . . . . . . . . . 13
| |
| 39 | nfrab1 3122 |
. . . . . . . . . . . . 13
| |
| 40 | 38, 39 | nfin 3820 |
. . . . . . . . . . . 12
|
| 41 | 40 | nfcri 2758 |
. . . . . . . . . . 11
|
| 42 | 33 | nfeq2 2780 |
. . . . . . . . . . 11
|
| 43 | 41, 42 | nfan 1828 |
. . . . . . . . . 10
|
| 44 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 45 | 34 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 46 | 44, 45 | anbi12d 747 |
. . . . . . . . . 10
|
| 47 | 37, 43, 46 | cbvopab1 4723 |
. . . . . . . . 9
|
| 48 | df-mpt 4730 |
. . . . . . . . 9
| |
| 49 | df-mpt 4730 |
. . . . . . . . 9
| |
| 50 | 47, 48, 49 | 3eqtr4i 2654 |
. . . . . . . 8
|
| 51 | 31, 36, 50 | 3eqtr4g 2681 |
. . . . . . 7
|
| 52 | 30, 51 | ax-mp 5 |
. . . . . 6
|
| 53 | resmpt 5449 |
. . . . . . . 8
| |
| 54 | nfcv 2764 |
. . . . . . . . . 10
| |
| 55 | nfcsb1v 3549 |
. . . . . . . . . 10
| |
| 56 | csbeq1a 3542 |
. . . . . . . . . 10
| |
| 57 | 54, 55, 56 | cbvmpt 4749 |
. . . . . . . . 9
|
| 58 | 57 | reseq1i 5392 |
. . . . . . . 8
|
| 59 | nfv 1843 |
. . . . . . . . . 10
| |
| 60 | 55 | nfeq2 2780 |
. . . . . . . . . . 11
|
| 61 | 41, 60 | nfan 1828 |
. . . . . . . . . 10
|
| 62 | 56 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 63 | 44, 62 | anbi12d 747 |
. . . . . . . . . 10
|
| 64 | 59, 61, 63 | cbvopab1 4723 |
. . . . . . . . 9
|
| 65 | df-mpt 4730 |
. . . . . . . . 9
| |
| 66 | df-mpt 4730 |
. . . . . . . . 9
| |
| 67 | 64, 65, 66 | 3eqtr4i 2654 |
. . . . . . . 8
|
| 68 | 53, 58, 67 | 3eqtr4g 2681 |
. . . . . . 7
|
| 69 | 30, 68 | ax-mp 5 |
. . . . . 6
|
| 70 | 27, 52, 69 | 3eqtr4i 2654 |
. . . . 5
|
| 71 | 16, 70 | eqtri 2644 |
. . . 4
|
| 72 | mbfposadd.5 |
. . . . 5
| |
| 73 | 1 | biantrurd 529 |
. . . . . . . . . 10
|
| 74 | elrege0 12278 |
. . . . . . . . . 10
| |
| 75 | 73, 74 | syl6bbr 278 |
. . . . . . . . 9
|
| 76 | 75 | rabbidva 3188 |
. . . . . . . 8
|
| 77 | 0xr 10086 |
. . . . . . . . . . 11
| |
| 78 | pnfxr 10092 |
. . . . . . . . . . 11
| |
| 79 | 0ltpnf 11956 |
. . . . . . . . . . 11
| |
| 80 | snunioo 12298 |
. . . . . . . . . . 11
| |
| 81 | 77, 78, 79, 80 | mp3an 1424 |
. . . . . . . . . 10
|
| 82 | 81 | imaeq2i 5464 |
. . . . . . . . 9
|
| 83 | imaundi 5545 |
. . . . . . . . 9
| |
| 84 | eqid 2622 |
. . . . . . . . . 10
| |
| 85 | 84 | mptpreima 5628 |
. . . . . . . . 9
|
| 86 | 82, 83, 85 | 3eqtr3ri 2653 |
. . . . . . . 8
|
| 87 | 76, 86 | syl6eq 2672 |
. . . . . . 7
|
| 88 | mbfposadd.1 |
. . . . . . . 8
| |
| 89 | 1, 84 | fmptd 6385 |
. . . . . . . 8
|
| 90 | mbfimasn 23401 |
. . . . . . . . . 10
| |
| 91 | 2, 90 | mp3an3 1413 |
. . . . . . . . 9
|
| 92 | mbfima 23399 |
. . . . . . . . 9
| |
| 93 | unmbl 23305 |
. . . . . . . . 9
| |
| 94 | 91, 92, 93 | syl2anc 693 |
. . . . . . . 8
|
| 95 | 88, 89, 94 | syl2anc 693 |
. . . . . . 7
|
| 96 | 87, 95 | eqeltrd 2701 |
. . . . . 6
|
| 97 | 5 | biantrurd 529 |
. . . . . . . . . 10
|
| 98 | elrege0 12278 |
. . . . . . . . . 10
| |
| 99 | 97, 98 | syl6bbr 278 |
. . . . . . . . 9
|
| 100 | 99 | rabbidva 3188 |
. . . . . . . 8
|
| 101 | 81 | imaeq2i 5464 |
. . . . . . . . 9
|
| 102 | imaundi 5545 |
. . . . . . . . 9
| |
| 103 | eqid 2622 |
. . . . . . . . . 10
| |
| 104 | 103 | mptpreima 5628 |
. . . . . . . . 9
|
| 105 | 101, 102, 104 | 3eqtr3ri 2653 |
. . . . . . . 8
|
| 106 | 100, 105 | syl6eq 2672 |
. . . . . . 7
|
| 107 | mbfposadd.3 |
. . . . . . . 8
| |
| 108 | 5, 103 | fmptd 6385 |
. . . . . . . 8
|
| 109 | mbfimasn 23401 |
. . . . . . . . . 10
| |
| 110 | 2, 109 | mp3an3 1413 |
. . . . . . . . 9
|
| 111 | mbfima 23399 |
. . . . . . . . 9
| |
| 112 | unmbl 23305 |
. . . . . . . . 9
| |
| 113 | 110, 111, 112 | syl2anc 693 |
. . . . . . . 8
|
| 114 | 107, 108, 113 | syl2anc 693 |
. . . . . . 7
|
| 115 | 106, 114 | eqeltrd 2701 |
. . . . . 6
|
| 116 | inmbl 23310 |
. . . . . 6
| |
| 117 | 96, 115, 116 | syl2anc 693 |
. . . . 5
|
| 118 | mbfres 23411 |
. . . . 5
| |
| 119 | 72, 117, 118 | syl2anc 693 |
. . . 4
|
| 120 | 71, 119 | syl5eqel 2705 |
. . 3
|
| 121 | inss2 3834 |
. . . . . 6
| |
| 122 | resabs1 5427 |
. . . . . 6
| |
| 123 | 121, 122 | ax-mp 5 |
. . . . 5
|
| 124 | rabid 3116 |
. . . . . . . . . 10
| |
| 125 | 124, 19 | anbi12i 733 |
. . . . . . . . 9
|
| 126 | elin 3796 |
. . . . . . . . 9
| |
| 127 | anandi 871 |
. . . . . . . . 9
| |
| 128 | 125, 126, 127 | 3bitr4i 292 |
. . . . . . . 8
|
| 129 | iffalse 4095 |
. . . . . . . . . . 11
| |
| 130 | 129, 23 | oveqan12d 6669 |
. . . . . . . . . 10
|
| 131 | 130 | ad2antll 765 |
. . . . . . . . 9
|
| 132 | 5 | recnd 10068 |
. . . . . . . . . . 11
|
| 133 | 132 | addid2d 10237 |
. . . . . . . . . 10
|
| 134 | 133 | adantrr 753 |
. . . . . . . . 9
|
| 135 | 131, 134 | eqtrd 2656 |
. . . . . . . 8
|
| 136 | 128, 135 | sylan2b 492 |
. . . . . . 7
|
| 137 | 136 | mpteq2dva 4744 |
. . . . . 6
|
| 138 | inss1 3833 |
. . . . . . . 8
| |
| 139 | ssrab2 3687 |
. . . . . . . 8
| |
| 140 | 138, 139 | sstri 3612 |
. . . . . . 7
|
| 141 | resmpt 5449 |
. . . . . . . 8
| |
| 142 | 35 | reseq1i 5392 |
. . . . . . . 8
|
| 143 | nfv 1843 |
. . . . . . . . . 10
| |
| 144 | nfrab1 3122 |
. . . . . . . . . . . . 13
| |
| 145 | 144, 39 | nfin 3820 |
. . . . . . . . . . . 12
|
| 146 | 145 | nfcri 2758 |
. . . . . . . . . . 11
|
| 147 | 146, 42 | nfan 1828 |
. . . . . . . . . 10
|
| 148 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 149 | 148, 45 | anbi12d 747 |
. . . . . . . . . 10
|
| 150 | 143, 147, 149 | cbvopab1 4723 |
. . . . . . . . 9
|
| 151 | df-mpt 4730 |
. . . . . . . . 9
| |
| 152 | df-mpt 4730 |
. . . . . . . . 9
| |
| 153 | 150, 151, 152 | 3eqtr4i 2654 |
. . . . . . . 8
|
| 154 | 141, 142, 153 | 3eqtr4g 2681 |
. . . . . . 7
|
| 155 | 140, 154 | ax-mp 5 |
. . . . . 6
|
| 156 | resmpt 5449 |
. . . . . . . 8
| |
| 157 | nfcv 2764 |
. . . . . . . . . 10
| |
| 158 | nfcsb1v 3549 |
. . . . . . . . . 10
| |
| 159 | csbeq1a 3542 |
. . . . . . . . . 10
| |
| 160 | 157, 158, 159 | cbvmpt 4749 |
. . . . . . . . 9
|
| 161 | 160 | reseq1i 5392 |
. . . . . . . 8
|
| 162 | nfv 1843 |
. . . . . . . . . 10
| |
| 163 | 158 | nfeq2 2780 |
. . . . . . . . . . 11
|
| 164 | 146, 163 | nfan 1828 |
. . . . . . . . . 10
|
| 165 | 159 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 166 | 148, 165 | anbi12d 747 |
. . . . . . . . . 10
|
| 167 | 162, 164, 166 | cbvopab1 4723 |
. . . . . . . . 9
|
| 168 | df-mpt 4730 |
. . . . . . . . 9
| |
| 169 | df-mpt 4730 |
. . . . . . . . 9
| |
| 170 | 167, 168, 169 | 3eqtr4i 2654 |
. . . . . . . 8
|
| 171 | 156, 161, 170 | 3eqtr4g 2681 |
. . . . . . 7
|
| 172 | 140, 171 | ax-mp 5 |
. . . . . 6
|
| 173 | 137, 155, 172 | 3eqtr4g 2681 |
. . . . 5
|
| 174 | 123, 173 | syl5eq 2668 |
. . . 4
|
| 175 | 84 | mptpreima 5628 |
. . . . . . . 8
|
| 176 | elioomnf 12268 |
. . . . . . . . . . 11
| |
| 177 | 77, 176 | ax-mp 5 |
. . . . . . . . . 10
|
| 178 | 1 | biantrurd 529 |
. . . . . . . . . . 11
|
| 179 | ltnle 10117 |
. . . . . . . . . . . 12
| |
| 180 | 1, 2, 179 | sylancl 694 |
. . . . . . . . . . 11
|
| 181 | 178, 180 | bitr3d 270 |
. . . . . . . . . 10
|
| 182 | 177, 181 | syl5bb 272 |
. . . . . . . . 9
|
| 183 | 182 | rabbidva 3188 |
. . . . . . . 8
|
| 184 | 175, 183 | syl5eq 2668 |
. . . . . . 7
|
| 185 | mbfima 23399 |
. . . . . . . 8
| |
| 186 | 88, 89, 185 | syl2anc 693 |
. . . . . . 7
|
| 187 | 184, 186 | eqeltrrd 2702 |
. . . . . 6
|
| 188 | inmbl 23310 |
. . . . . 6
| |
| 189 | 187, 115, 188 | syl2anc 693 |
. . . . 5
|
| 190 | mbfres 23411 |
. . . . 5
| |
| 191 | 107, 189, 190 | syl2anc 693 |
. . . 4
|
| 192 | 174, 191 | eqeltrd 2701 |
. . 3
|
| 193 | ssid 3624 |
. . . . . 6
| |
| 194 | dfrab3ss 3905 |
. . . . . 6
| |
| 195 | 193, 194 | ax-mp 5 |
. . . . 5
|
| 196 | rabxm 3961 |
. . . . . 6
| |
| 197 | 196 | ineq1i 3810 |
. . . . 5
|
| 198 | indir 3875 |
. . . . 5
| |
| 199 | 195, 197, 198 | 3eqtrri 2649 |
. . . 4
|
| 200 | 199 | a1i 11 |
. . 3
|
| 201 | 13, 120, 192, 200 | mbfres2 23412 |
. 2
|
| 202 | rabid 3116 |
. . . . . 6
| |
| 203 | iffalse 4095 |
. . . . . . . . 9
| |
| 204 | 203 | oveq2d 6666 |
. . . . . . . 8
|
| 205 | 4 | recnd 10068 |
. . . . . . . . 9
|
| 206 | 205 | addid1d 10236 |
. . . . . . . 8
|
| 207 | 204, 206 | sylan9eqr 2678 |
. . . . . . 7
|
| 208 | 207 | anasss 679 |
. . . . . 6
|
| 209 | 202, 208 | sylan2b 492 |
. . . . 5
|
| 210 | 209 | mpteq2dva 4744 |
. . . 4
|
| 211 | ssrab2 3687 |
. . . . 5
| |
| 212 | resmpt 5449 |
. . . . . 6
| |
| 213 | 35 | reseq1i 5392 |
. . . . . 6
|
| 214 | nfv 1843 |
. . . . . . . 8
| |
| 215 | nfrab1 3122 |
. . . . . . . . . 10
| |
| 216 | 215 | nfcri 2758 |
. . . . . . . . 9
|
| 217 | 216, 42 | nfan 1828 |
. . . . . . . 8
|
| 218 | eleq1 2689 |
. . . . . . . . 9
| |
| 219 | 218, 45 | anbi12d 747 |
. . . . . . . 8
|
| 220 | 214, 217, 219 | cbvopab1 4723 |
. . . . . . 7
|
| 221 | df-mpt 4730 |
. . . . . . 7
| |
| 222 | df-mpt 4730 |
. . . . . . 7
| |
| 223 | 220, 221, 222 | 3eqtr4i 2654 |
. . . . . 6
|
| 224 | 212, 213, 223 | 3eqtr4g 2681 |
. . . . 5
|
| 225 | 211, 224 | ax-mp 5 |
. . . 4
|
| 226 | resmpt 5449 |
. . . . . 6
| |
| 227 | nfcv 2764 |
. . . . . . . 8
| |
| 228 | nfcsb1v 3549 |
. . . . . . . 8
| |
| 229 | csbeq1a 3542 |
. . . . . . . 8
| |
| 230 | 227, 228, 229 | cbvmpt 4749 |
. . . . . . 7
|
| 231 | 230 | reseq1i 5392 |
. . . . . 6
|
| 232 | nfv 1843 |
. . . . . . . 8
| |
| 233 | 228 | nfeq2 2780 |
. . . . . . . . 9
|
| 234 | 216, 233 | nfan 1828 |
. . . . . . . 8
|
| 235 | 229 | eqeq2d 2632 |
. . . . . . . . 9
|
| 236 | 218, 235 | anbi12d 747 |
. . . . . . . 8
|
| 237 | 232, 234, 236 | cbvopab1 4723 |
. . . . . . 7
|
| 238 | df-mpt 4730 |
. . . . . . 7
| |
| 239 | df-mpt 4730 |
. . . . . . 7
| |
| 240 | 237, 238, 239 | 3eqtr4i 2654 |
. . . . . 6
|
| 241 | 226, 231, 240 | 3eqtr4g 2681 |
. . . . 5
|
| 242 | 211, 241 | ax-mp 5 |
. . . 4
|
| 243 | 210, 225, 242 | 3eqtr4g 2681 |
. . 3
|
| 244 | 1, 88 | mbfpos 23418 |
. . . 4
|
| 245 | 103 | mptpreima 5628 |
. . . . . 6
|
| 246 | elioomnf 12268 |
. . . . . . . . 9
| |
| 247 | 77, 246 | ax-mp 5 |
. . . . . . . 8
|
| 248 | 5 | biantrurd 529 |
. . . . . . . . 9
|
| 249 | ltnle 10117 |
. . . . . . . . . 10
| |
| 250 | 5, 2, 249 | sylancl 694 |
. . . . . . . . 9
|
| 251 | 248, 250 | bitr3d 270 |
. . . . . . . 8
|
| 252 | 247, 251 | syl5bb 272 |
. . . . . . 7
|
| 253 | 252 | rabbidva 3188 |
. . . . . 6
|
| 254 | 245, 253 | syl5eq 2668 |
. . . . 5
|
| 255 | mbfima 23399 |
. . . . . 6
| |
| 256 | 107, 108, 255 | syl2anc 693 |
. . . . 5
|
| 257 | 254, 256 | eqeltrrd 2702 |
. . . 4
|
| 258 | mbfres 23411 |
. . . 4
| |
| 259 | 244, 257, 258 | syl2anc 693 |
. . 3
|
| 260 | 243, 259 | eqeltrd 2701 |
. 2
|
| 261 | rabxm 3961 |
. . . 4
| |
| 262 | 261 | eqcomi 2631 |
. . 3
|
| 263 | 262 | a1i 11 |
. 2
|
| 264 | 10, 201, 260, 263 | mbfres2 23412 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 df-mbf 23388 |
| This theorem is referenced by: itgaddnclem2 33469 |
| Copyright terms: Public domain | W3C validator |