MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab3 Structured version   Visualization version   Unicode version

Theorem cbvoprab3 6731
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
Hypotheses
Ref Expression
cbvoprab3.1  |-  F/ w ph
cbvoprab3.2  |-  F/ z ps
cbvoprab3.3  |-  ( z  =  w  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvoprab3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  w >.  |  ps }
Distinct variable groups:    x, z, w    y, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)

Proof of Theorem cbvoprab3
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6  |-  F/ w  v  =  <. x ,  y >.
2 cbvoprab3.1 . . . . . 6  |-  F/ w ph
31, 2nfan 1828 . . . . 5  |-  F/ w
( v  =  <. x ,  y >.  /\  ph )
43nfex 2154 . . . 4  |-  F/ w E. y ( v  = 
<. x ,  y >.  /\  ph )
54nfex 2154 . . 3  |-  F/ w E. x E. y ( v  =  <. x ,  y >.  /\  ph )
6 nfv 1843 . . . . . 6  |-  F/ z  v  =  <. x ,  y >.
7 cbvoprab3.2 . . . . . 6  |-  F/ z ps
86, 7nfan 1828 . . . . 5  |-  F/ z ( v  =  <. x ,  y >.  /\  ps )
98nfex 2154 . . . 4  |-  F/ z E. y ( v  =  <. x ,  y
>.  /\  ps )
109nfex 2154 . . 3  |-  F/ z E. x E. y
( v  =  <. x ,  y >.  /\  ps )
11 cbvoprab3.3 . . . . 5  |-  ( z  =  w  ->  ( ph 
<->  ps ) )
1211anbi2d 740 . . . 4  |-  ( z  =  w  ->  (
( v  =  <. x ,  y >.  /\  ph ) 
<->  ( v  =  <. x ,  y >.  /\  ps ) ) )
13122exbidv 1852 . . 3  |-  ( z  =  w  ->  ( E. x E. y ( v  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( v  =  <. x ,  y >.  /\  ps ) ) )
145, 10, 13cbvopab2 4724 . 2  |-  { <. v ,  z >.  |  E. x E. y ( v  =  <. x ,  y
>.  /\  ph ) }  =  { <. v ,  w >.  |  E. x E. y ( v  =  <. x ,  y
>.  /\  ps ) }
15 dfoprab2 6701 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. v ,  z >.  |  E. x E. y ( v  =  <. x ,  y
>.  /\  ph ) }
16 dfoprab2 6701 . 2  |-  { <. <.
x ,  y >. ,  w >.  |  ps }  =  { <. v ,  w >.  |  E. x E. y ( v  =  <. x ,  y
>.  /\  ps ) }
1714, 15, 163eqtr4i 2654 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  w >.  |  ps }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704   F/wnf 1708   <.cop 4183   {copab 4712   {coprab 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-oprab 6654
This theorem is referenced by:  cbvoprab3v  6732  tposoprab  7388  erovlem  7843
  Copyright terms: Public domain W3C validator