| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erovlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for erov 7844 and eroprf 7845. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| Ref | Expression |
|---|---|
| erovlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . . . 8
| |
| 2 | 1 | reximi 3011 |
. . . . . . 7
|
| 3 | 2 | reximi 3011 |
. . . . . 6
|
| 4 | eropr.1 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2i 2693 |
. . . . . . . . 9
|
| 6 | vex 3203 |
. . . . . . . . . 10
| |
| 7 | 6 | elqs 7799 |
. . . . . . . . 9
|
| 8 | 5, 7 | bitri 264 |
. . . . . . . 8
|
| 9 | eropr.2 |
. . . . . . . . . 10
| |
| 10 | 9 | eleq2i 2693 |
. . . . . . . . 9
|
| 11 | vex 3203 |
. . . . . . . . . 10
| |
| 12 | 11 | elqs 7799 |
. . . . . . . . 9
|
| 13 | 10, 12 | bitri 264 |
. . . . . . . 8
|
| 14 | 8, 13 | anbi12i 733 |
. . . . . . 7
|
| 15 | reeanv 3107 |
. . . . . . 7
| |
| 16 | 14, 15 | bitr4i 267 |
. . . . . 6
|
| 17 | 3, 16 | sylibr 224 |
. . . . 5
|
| 18 | 17 | pm4.71ri 665 |
. . . 4
|
| 19 | eropr.3 |
. . . . . . . 8
| |
| 20 | eropr.4 |
. . . . . . . 8
| |
| 21 | eropr.5 |
. . . . . . . 8
| |
| 22 | eropr.6 |
. . . . . . . 8
| |
| 23 | eropr.7 |
. . . . . . . 8
| |
| 24 | eropr.8 |
. . . . . . . 8
| |
| 25 | eropr.9 |
. . . . . . . 8
| |
| 26 | eropr.10 |
. . . . . . . 8
| |
| 27 | eropr.11 |
. . . . . . . 8
| |
| 28 | 4, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27 | eroveu 7842 |
. . . . . . 7
|
| 29 | iota1 5865 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 17 |
. . . . . 6
|
| 31 | eqcom 2629 |
. . . . . 6
| |
| 32 | 30, 31 | syl6bb 276 |
. . . . 5
|
| 33 | 32 | pm5.32da 673 |
. . . 4
|
| 34 | 18, 33 | syl5bb 272 |
. . 3
|
| 35 | 34 | oprabbidv 6709 |
. 2
|
| 36 | eropr.12 |
. 2
| |
| 37 | df-mpt2 6655 |
. . 3
| |
| 38 | nfv 1843 |
. . . 4
| |
| 39 | nfv 1843 |
. . . . 5
| |
| 40 | nfiota1 5853 |
. . . . . 6
| |
| 41 | 40 | nfeq2 2780 |
. . . . 5
|
| 42 | 39, 41 | nfan 1828 |
. . . 4
|
| 43 | eqeq1 2626 |
. . . . 5
| |
| 44 | 43 | anbi2d 740 |
. . . 4
|
| 45 | 38, 42, 44 | cbvoprab3 6731 |
. . 3
|
| 46 | 37, 45 | eqtr4i 2647 |
. 2
|
| 47 | 35, 36, 46 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: erov 7844 eroprf 7845 |
| Copyright terms: Public domain | W3C validator |