MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccase Structured version   Visualization version   Unicode version

Theorem ccase 987
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
Hypotheses
Ref Expression
ccase.1  |-  ( (
ph  /\  ps )  ->  ta )
ccase.2  |-  ( ( ch  /\  ps )  ->  ta )
ccase.3  |-  ( (
ph  /\  th )  ->  ta )
ccase.4  |-  ( ( ch  /\  th )  ->  ta )
Assertion
Ref Expression
ccase  |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  th ) )  ->  ta )

Proof of Theorem ccase
StepHypRef Expression
1 ccase.1 . . 3  |-  ( (
ph  /\  ps )  ->  ta )
2 ccase.2 . . 3  |-  ( ( ch  /\  ps )  ->  ta )
31, 2jaoian 824 . 2  |-  ( ( ( ph  \/  ch )  /\  ps )  ->  ta )
4 ccase.3 . . 3  |-  ( (
ph  /\  th )  ->  ta )
5 ccase.4 . . 3  |-  ( ( ch  /\  th )  ->  ta )
64, 5jaoian 824 . 2  |-  ( ( ( ph  \/  ch )  /\  th )  ->  ta )
73, 6jaodan 826 1  |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  th ) )  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by:  ccased  988  ccase2  989  undif3OLD  3889  ssprsseq  4357  injresinjlem  12588  prodmo  14666  nn0gcdsq  15460  symgextf1  17841  cnmsgnsubg  19923  kelac2lem  37634
  Copyright terms: Public domain W3C validator