MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0gcdsq Structured version   Visualization version   Unicode version

Theorem nn0gcdsq 15460
Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nn0gcdsq  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )

Proof of Theorem nn0gcdsq
StepHypRef Expression
1 elnn0 11294 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 elnn0 11294 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
3 sqgcd 15278 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
4 nncn 11028 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
5 abssq 14046 . . . . . . 7  |-  ( B  e.  CC  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
64, 5syl 17 . . . . . 6  |-  ( B  e.  NN  ->  (
( abs `  B
) ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
7 nnz 11399 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  ZZ )
8 gcd0id 15240 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
0  gcd  B )  =  ( abs `  B
) )
97, 8syl 17 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  B )  =  ( abs `  B
) )
109oveq1d 6665 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( abs `  B ) ^ 2 ) )
11 sq0 12955 . . . . . . . . 9  |-  ( 0 ^ 2 )  =  0
1211a1i 11 . . . . . . . 8  |-  ( B  e.  NN  ->  (
0 ^ 2 )  =  0 )
1312oveq1d 6665 . . . . . . 7  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( 0  gcd  ( B ^ 2 ) ) )
14 zsqcl 12934 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
15 gcd0id 15240 . . . . . . . 8  |-  ( ( B ^ 2 )  e.  ZZ  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
167, 14, 153syl 18 . . . . . . 7  |-  ( B  e.  NN  ->  (
0  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
1713, 16eqtrd 2656 . . . . . 6  |-  ( B  e.  NN  ->  (
( 0 ^ 2 )  gcd  ( B ^ 2 ) )  =  ( abs `  ( B ^ 2 ) ) )
186, 10, 173eqtr4d 2666 . . . . 5  |-  ( B  e.  NN  ->  (
( 0  gcd  B
) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
1918adantl 482 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( 0  gcd  B ) ^
2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
20 oveq1 6657 . . . . . . 7  |-  ( A  =  0  ->  ( A  gcd  B )  =  ( 0  gcd  B
) )
2120oveq1d 6665 . . . . . 6  |-  ( A  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( 0  gcd  B ) ^
2 ) )
22 oveq1 6657 . . . . . . 7  |-  ( A  =  0  ->  ( A ^ 2 )  =  ( 0 ^ 2 ) )
2322oveq1d 6665 . . . . . 6  |-  ( A  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) )
2421, 23eqeq12d 2637 . . . . 5  |-  ( A  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( (
0  gcd  B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^ 2 ) ) ) )
2524adantr 481 . . . 4  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( 0  gcd 
B ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  ( B ^
2 ) ) ) )
2619, 25mpbird 247 . . 3  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
27 nncn 11028 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
28 abssq 14046 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
2927, 28syl 17 . . . . . 6  |-  ( A  e.  NN  ->  (
( abs `  A
) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
30 nnz 11399 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
31 gcdid0 15241 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3230, 31syl 17 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3332oveq1d 6665 . . . . . 6  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( abs `  A ) ^ 2 ) )
3411a1i 11 . . . . . . . 8  |-  ( A  e.  NN  ->  (
0 ^ 2 )  =  0 )
3534oveq2d 6666 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( ( A ^ 2 )  gcd  0 ) )
36 zsqcl 12934 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
37 gcdid0 15241 . . . . . . . 8  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3830, 36, 373syl 18 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  0 )  =  ( abs `  ( A ^ 2 ) ) )
3935, 38eqtrd 2656 . . . . . 6  |-  ( A  e.  NN  ->  (
( A ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( abs `  ( A ^ 2 ) ) )
4029, 33, 393eqtr4d 2666 . . . . 5  |-  ( A  e.  NN  ->  (
( A  gcd  0
) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4140adantr 481 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
42 oveq2 6658 . . . . . . 7  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
4342oveq1d 6665 . . . . . 6  |-  ( B  =  0  ->  (
( A  gcd  B
) ^ 2 )  =  ( ( A  gcd  0 ) ^
2 ) )
44 oveq1 6657 . . . . . . 7  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
4544oveq2d 6666 . . . . . 6  |-  ( B  =  0  ->  (
( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) )
4643, 45eqeq12d 2637 . . . . 5  |-  ( B  =  0  ->  (
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  <->  ( ( A  gcd  0 ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4746adantl 482 . . . 4  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^
2 )  gcd  ( B ^ 2 ) )  <-> 
( ( A  gcd  0 ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( 0 ^ 2 ) ) ) )
4841, 47mpbird 247 . . 3  |-  ( ( A  e.  NN  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
49 gcd0val 15219 . . . . . 6  |-  ( 0  gcd  0 )  =  0
5049oveq1i 6660 . . . . 5  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( 0 ^ 2 )
5111, 11oveq12i 6662 . . . . . 6  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  ( 0  gcd  0
)
5251, 49eqtri 2644 . . . . 5  |-  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) )  =  0
5311, 50, 523eqtr4i 2654 . . . 4  |-  ( ( 0  gcd  0 ) ^ 2 )  =  ( ( 0 ^ 2 )  gcd  (
0 ^ 2 ) )
54 oveq12 6659 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  gcd  B )  =  ( 0  gcd  0 ) )
5554oveq1d 6665 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( 0  gcd  0
) ^ 2 ) )
5622, 44oveqan12d 6669 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A ^ 2 )  gcd  ( B ^ 2 ) )  =  ( ( 0 ^ 2 )  gcd  ( 0 ^ 2 ) ) )
5753, 55, 563eqtr4a 2682 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
583, 26, 48, 57ccase 987 . 2  |-  ( ( ( A  e.  NN  \/  A  =  0
)  /\  ( B  e.  NN  \/  B  =  0 ) )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
591, 2, 58syl2anb 496 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ^cexp 12860   abscabs 13974    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  zgcdsq  15461
  Copyright terms: Public domain W3C validator