MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssprsseq Structured version   Visualization version   Unicode version

Theorem ssprsseq 4357
Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020.)
Assertion
Ref Expression
ssprsseq  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  <->  { A ,  B }  =  { C ,  D }
) )

Proof of Theorem ssprsseq
StepHypRef Expression
1 ssprss 4356 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  { C ,  D }  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) ) )
213adant3 1081 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) ) )
3 eqneqall 2805 . . . . . . . 8  |-  ( A  =  B  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D }
) )
4 eqtr3 2643 . . . . . . . 8  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
53, 4syl11 33 . . . . . . 7  |-  ( A  =/=  B  ->  (
( A  =  C  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D }
) )
653ad2ant3 1084 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( A  =  C  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D }
) )
76com12 32 . . . . 5  |-  ( ( A  =  C  /\  B  =  C )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
8 preq12 4270 . . . . . . 7  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { D ,  C } )
9 prcom 4267 . . . . . . 7  |-  { D ,  C }  =  { C ,  D }
108, 9syl6eq 2672 . . . . . 6  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D } )
1110a1d 25 . . . . 5  |-  ( ( A  =  D  /\  B  =  C )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
12 preq12 4270 . . . . . 6  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
1312a1d 25 . . . . 5  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
14 eqtr3 2643 . . . . . . . 8  |-  ( ( A  =  D  /\  B  =  D )  ->  A  =  B )
153, 14syl11 33 . . . . . . 7  |-  ( A  =/=  B  ->  (
( A  =  D  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D }
) )
16153ad2ant3 1084 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( A  =  D  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D }
) )
1716com12 32 . . . . 5  |-  ( ( A  =  D  /\  B  =  D )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
187, 11, 13, 17ccase 987 . . . 4  |-  ( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) )  -> 
( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
1918com12 32 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
)  ->  { A ,  B }  =  { C ,  D }
) )
202, 19sylbid 230 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  ->  { A ,  B }  =  { C ,  D }
) )
21 eqimss 3657 . 2  |-  ( { A ,  B }  =  { C ,  D }  ->  { A ,  B }  C_  { C ,  D } )
2220, 21impbid1 215 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  <->  { A ,  B }  =  { C ,  D }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180
This theorem is referenced by:  upgredgpr  26037
  Copyright terms: Public domain W3C validator